Metabolic

Tardigrade Proteins Slow Aging in Human Cells

Researchers have discovered that proteins from tardigrades, known for surviving extreme conditions, can slow molecular processes in human cells, offering promising applications in aging research and cell storage. This finding paves the way for developing new technologies to enhance human health and treat diseases.

Researchers at the University of Wyoming have advanced our understanding of how tardigrades survive extreme conditions and shown that proteins from the microscopic creatures expressed in human cells can slow down molecular processes.

This makes the tardigrade proteins potential candidates in technologies centered on slowing the aging process and in long-term storage of human cells.

The new study, published in the journal Protein Science, examines the mechanisms used by tardigrades to enter and exit from suspended animation when faced by environmental stress. Led by Senior Research Scientist Silvia Sanchez-Martinez in the lab of UW Department of Molecular Biology Assistant Professor Thomas Boothby, the research provides additional evidence that tardigrade proteins eventually could be used to make life-saving treatments available to people where refrigeration is not possible — and enhance storage of cell-based therapies, such as stem cells.

Measuring less than half a millimeter long, tardigrades — also known as water bears — can survive being completely dried out; being frozen to just above

University of Wyoming Senior Research Scientist Silvia Sanchez-Martinez, left, and Department of Molecular Biology Assistant Professor Thomas Boothby led new research providing additional evidence that tardigrade proteins eventually could be used to make life-saving treatments available to people where refrigeration is not possible. Credit: Vindya Kumara

Research Findings and Future Directions

They survive by entering a state of suspended animation called biostasis, using proteins that form gels inside of cells and slow down life processes, according to the new UW-led research. Co-authors of the study are from institutions including the {"@context":"http:\/\/schema.org","@type":"Article","dateCreated":"2024-03-30T22:56:11+00:00","datePublished":"2024-03-30T22:56:11+00:00","dateModified":"2024-03-30T22:56:11+00:00","headline":"Tardigrade Proteins Slow Aging in Human Cells","name":"Tardigrade Proteins Slow Aging in Human Cells","keywords":[],"url":"https:\/\/dailyzhealthpress.com\/tardigrade-proteins-slow-aging-in-human-cells\/","description":"Researchers have discovered that proteins from tardigrades, known for surviving extreme conditions, can slow molecular processes in human cells, offering promising applications in aging research and c","copyrightYear":"2024","articleSection":"Metabolic","articleBody":"Researchers have discovered that proteins from tardigrades, known for surviving extreme conditions, can slow molecular processes in human cells, offering promising applications in aging research and cell storage. This finding paves the way for developing new technologies to enhance human health and treat diseases.Researchers at the University of Wyoming have advanced our understanding of how tardigrades survive extreme conditions and shown that proteins from the microscopic creatures expressed in human cells can slow down molecular processes.This makes the tardigrade proteins potential candidates in technologies centered on slowing the aging process and in long-term storage of human cells.The new study, published in the journal Protein Science, examines the mechanisms used by tardigrades to enter and exit from suspended animation when faced by environmental stress. Led by Senior Research Scientist Silvia Sanchez-Martinez in the lab of UW Department of Molecular Biology Assistant Professor Thomas Boothby, the research provides additional evidence that tardigrade proteins eventually could be used to make life-saving treatments available to people where refrigeration is not possible \u2014 and enhance storage of cell-based therapies, such as stem cells.Measuring less than half a millimeter long, tardigrades \u2014 also known as water bears \u2014 can survive being completely dried out; being frozen to just above absolute zero (about minus 458 degrees Fahrenheit, when all molecular motion stops); heated to more than 300 degrees Fahrenheit; irradiated several thousand times beyond what a human could withstand; and even survive the vacuum of outer space.University of Wyoming Senior Research Scientist Silvia Sanchez-Martinez, left, and Department of Molecular Biology Assistant Professor Thomas Boothby led new research providing additional evidence that tardigrade proteins eventually could be used to make life-saving treatments available to people where refrigeration is not possible. Credit: Vindya KumaraResearch Findings and Future DirectionsThey survive by entering a state of suspended animation called biostasis, using proteins that form gels inside of cells and slow down life processes, according to the new UW-led research. Co-authors of the study are from institutions including the University of Bristol in the United Kingdom, Washington University in St. Louis, the University of California-Merced, the University of Bologna in Italy, and the University of Amsterdam in the Netherlands.Sanchez-Martinez, who came from the Howard Hughes Medical Institute to join Boothby\u2019s UW lab, was the lead author of the paper.\u201cAmazingly, when we introduce these proteins into human cells, they gel and slow down metabolism, just like in tardigrades,\u201d Sanchez-Martinez says. \u201cFurthermore, just like tardigrades, when you put human cells that have these proteins into biostasis, they become more resistant to stresses, conferring some of the tardigrades\u2019 abilities to the human cells.\u201dImportantly, the research shows that the whole process is reversible: \u201cWhen the stress is relieved, the tardigrade gels dissolve, and the human cells return to their normal metabolism,\u201d Boothby says.\u201cOur findings provide an avenue for pursuing technologies centered on the induction of biostasis in cells and even whole organisms to slow aging and enhance storage and stability,\u201d the researchers concluded.Previous research by Boothby\u2019s team showed that natural and engineered versions of tardigrade proteins can be used to stabilize an important pharmaceutical used to treat people with hemophilia and other conditions without the need for refrigeration.Tardigrades\u2019 ability to survive being dried out has puzzled scientists, as the creatures do so in a manner that appears to differ from a number of other organisms with the ability to enter suspended animation.Reference: \u201cLabile assembly of a tardigrade protein induces biostasis\u201d by S. Sanchez-Martinez, K. Nguyen, S. Biswas, V. Nicholson, A. V. Romanyuk, J. Ramirez, S. Kc, A. Akter, C. Childs, E. K. Meese, E. T. Usher, G. M. Ginell, F. Yu, E. Gollub, M. Malferrari, F. Francia, G. Venturoli, E. W. Martin, F. Caporaletti, G. Giubertoni, S. Woutersen, S. Sukenik, D. N. Woolfson, A. S. Holehouse and T. C. Boothby, 19 March 2024, Protein Science.DOI: 10.1002\/pro.4941The research was funded by the National Institutes of Health, the NASA Astrobiology Institute, and the U.S. National Science Foundation.\r\n","publisher":{"@id":"#Publisher","@type":"Organization","name":"DAILYZ HEALTH NEWS","logo":{"@type":"ImageObject","url":"http:\/\/dailyzhealthpress.com\/wp-content\/uploads\/2020\/12\/DAILYZ-HEALTH-NEWS-e1607165565708.png"}},"sourceOrganization":{"@id":"#Publisher"},"copyrightHolder":{"@id":"#Publisher"},"mainEntityOfPage":{"@type":"WebPage","@id":"https:\/\/dailyzhealthpress.com\/tardigrade-proteins-slow-aging-in-human-cells\/","breadcrumb":{"@id":"#Breadcrumb"}},"author":{"@type":"Person","name":"Evan Vega","url":"https:\/\/dailyzhealthpress.com\/author\/evan-vega\/"},"image":{"@type":"ImageObject","url":"https:\/\/dailyzhealthpress.com\/wp-content\/uploads\/2024\/03\/Tardigrade-in-Space.jpg","width":1600,"height":1067}}

Related Articles