Metabolic

Metabolic control of innate lymphoid cells in health and disease

  • Vivier, E. et al. Innate lymphoid cells: 10 years on. Cell 174, 1054–1066 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spits, H. et al. Innate lymphoid cells—a proposal for uniform nomenclature. Nat. Rev. Immunol. 13, 145–149 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Artis, D. & Spits, H. The biology of innate lymphoid cells. Nature 517, 293–301 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Klose, C. S. & Artis, D. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis. Nat. Immunol. 17, 765–774 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhou, L. & Sonnenberg, G. F. Essential immunologic orchestrators of intestinal homeostasis. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aao1605 (2018).

  • Zhou, L. et al. Innate lymphoid cells support regulatory T cells in the intestine through interleukin-2. Nature 568, 405–409 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, L. et al. Group 3 innate lymphoid cells produce the growth factor HB-EGF to protect the intestine from TNF-mediated inflammation. Nat. Immunol. 23, 251–261 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lyu, M. et al. ILC3s select microbiota-specific regulatory T cells to establish tolerance in the gut. Nature https://doi.org/10.1038/s41586-022-05141-x (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhou, W. et al. ZBTB46 defines and regulates ILC3s that protect the intestine. Nature 609, 159–165 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ouyang, W. & O’Garra, A. IL-10 family cytokines IL-10 and IL-22: from basic science to clinical translation. Immunity 50, 871–891 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dudakov, J. A., Hanash, A. M. & van den Brink, M. R. Interleukin-22: immunobiology and pathology. Annu. Rev. Immunol. 33, 747–785 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Huang, Y. et al. IL-25-responsive, lineage-negative KLRG1hi cells are multipotential ‘inflammatory’ type 2 innate lymphoid cells. Nat. Immunol. 16, 161–169 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Grigg, J. B. et al. Antigen-presenting innate lymphoid cells orchestrate neuroinflammation. Nature 600, 707–712 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Buck, M. D., O’Sullivan, D. & Pearce, E. L. T cell metabolism drives immunity. J. Exp. Med. 212, 1345–1360 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geltink, R. I. K., Kyle, R. L. & Pearce, E. L. Unraveling the complex interplay between T cell metabolism and function. Annu. Rev. Immunol. 36, 461–488 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chapman, N. M., Boothby, M. R. & Chi, H. Metabolic coordination of T cell quiescence and activation. Nat. Rev. Immunol. 20, 55–70 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, K. L. & Finlay, D. K. Immunometabolism and natural killer cell responses. Nat. Rev. Immunol. 19, 282–290 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Terren, I. et al. Modulating NK cell metabolism for cancer immunotherapy. Semin. Hematol. 57, 213–224 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gury-BenAri, M. et al. The spectrum and regulatory landscape of intestinal innate lymphoid cells are shaped by the microbiome. Cell 166, 1231–1246 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Monticelli, L. A. et al. Arginase 1 is an innate lymphoid-cell-intrinsic metabolic checkpoint controlling type 2 inflammation. Nat. Immunol. 17, 656–665 (2016). This paper details arginase 1 as a key metabolic checkpoint that is required to meet the bioenergetic needs of ILC2s during type 2 inflammation.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bando, J. K., Nussbaum, J. C., Liang, H. E. & Locksley, R. M. Type 2 innate lymphoid cells constitutively express arginase 1 in the naive and inflamed lung. J. Leukoc. Biol. 94, 877–884 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilhelm, C. et al. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection. J. Exp. Med. 213, 1409–1418 (2016). This paper determined that ILC2s robustly utilize fatty acid metabolism for IL-13 production during helminth infection.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karagiannis, F. et al. Lipid-droplet formation drives pathogenic group 2 innate lymphoid cells in airway inflammation. Immunity 52, 620–634 (2020). This paper identifies that pro-inflammatory ILC2 responses in the airway are regulated by IL-33-induced Pparg and Dgat that subsequently support lipid droplet storage and fatty acid metabolism.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Surace, L. et al. Dichotomous metabolic networks govern human ILC2 proliferation and function. Nat. Immunol. 22, 1367–1374 (2021). This paper details how human ILC2s exhibit differential dependence of OXPHOS and mTOR signaling for proliferation and cytokine production, respectively.

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Galle-Treger, L. et al. Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. J. Allergy Clin. Immunol. 145, 502–517 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Helou, D. G. et al. PD-1 pathway regulates ILC2 metabolism and PD-1 agonist treatment ameliorates airway hyperreactivity. Nat. Commun. 11, 3998 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fu, L. et al. A mitochondrial STAT3–methionine metabolism axis promotes ILC2-driven allergic lung inflammation. J. Allergy Clin. Immunol. https://doi.org/10.1016/j.jaci.2021.12.783 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hodge, S. H. et al. Amino acid availability acts as a metabolic rheostat to determine the magnitude of ILC2 responses. Preprint at BioRxiv https://doi.org/10.1101/2022.06.22.497162 (2022).

  • Flamar, A. L. et al. Interleukin-33 induces the enzyme tryptophan hydroxylase 1 to promote inflammatory group 2 innate lymphoid cell-mediated immunity. Immunity 52, 606–619 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ricardo-Gonzalez, R. R. et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat. Immunol. 19, 1093–1099 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Di Luccia, B., Gilfillan, S., Cella, M., Colonna, M. & Huang, S. C. ILC3s integrate glycolysis and mitochondrial production of reactive oxygen species to fulfill activation demands. J. Exp. Med. 216, 2231–2241 (2019). This paper determined that ILC3s rely on mTORC1 signaling, activation of HIF1α, and mROS production to support optimal responses during an enteric infection.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Budda, S. A., Girton, A., Henderson, J. G. & Zenewicz, L. A. Transcription factor HIF1α controls expression of the cytokine IL-22 in CD4+ T cells. J. Immunol. 197, 2646–2652 (2016).

  • Dang, E. V. et al. Control of TH17/Treg balance by hypoxia-inducible factor 1. Cell 146, 772–784 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teufel, C. et al. mTOR signaling mediates ILC3-driven immunopathology. Mucosal Immunol. 14, 1323–1334 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fachi, J. L. et al. Hypoxia enhances ILC3 responses through HIF1α-dependent mechanism. Mucosal Immunol. 14, 828–841 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krzywinska, E. et al. The transcription factor HIF1α mediates plasticity of NKp46+ innate lymphoid cells in the gut. J. Exp. Med. https://doi.org/10.1084/jem.20210909 (2022). This paper identifies that intracellular metabolic networks, such as those driven by HIF1α and glycolysis, shape the plasticity ILC3 subsets.

  • Parker, M. E. et al. c-Maf regulates the plasticity of group 3 innate lymphoid cells by restraining the type 1 program. J. Exp. Med. https://doi.org/10.1084/jem.20191030 (2020).

  • Wu, D. et al. PD-1 signaling facilitates activation of lymphoid tissue inducer cells by restraining fatty acid oxidation. Nat. Metab. 4, 867–882 (2022). This paper details how PD-1 signaling impacts the cellular metabolism of an ILC3 subset and shapes effector IL-22 production during intestinal inflammation.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Serafini, N. et al. Trained ILC3 responses promote intestinal defense. Science 375, 859–863 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Godinho-Silva, C. et al. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574, 254–258 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teng, F. et al. A circadian clock is essential for homeostasis of group 3 innate lymphoid cells in the gut. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aax1215 (2019).

  • Wang, Q. et al. Circadian rhythm-dependent and circadian rhythm-independent impacts of the molecular clock on type 3 innate lymphoid cells. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aay7501 (2019).

  • Spencer, S. P. et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science 343, 432–437 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mielke, L. A. et al. Retinoic acid expression associates with enhanced IL-22 production by γδ T cells and innate lymphoid cells and attenuation of intestinal inflammation. J. Exp. Med. 210, 1117–1124 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • van de Pavert, S. A. et al. Maternal retinoids control type 3 innate lymphoid cells and set the offspring immunity. Nature 508, 123–127 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, M. H., Taparowsky, E. J. & Kim, C. H. Retinoic acid differentially regulates the migration of innate lymphoid cell subsets to the gut. Immunity 43, 107–119 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Konya, V. et al. Vitamin D downregulates the IL-23 receptor pathway in human mucosal group 3 innate lymphoid cells. J. Allergy Clin. Immunol. 141, 279–292 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lin, Y. D., Arora, J., Diehl, K., Bora, S. A. & Cantorna, M. T. Vitamin D is required for ILC3-derived IL-22 and protection from Citrobacter rodentium infection. Front. Immunol. 10, 1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kiss, E. A. et al. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334, 1561–1565 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, J. S. et al. AHR drives the development of gut ILC22 cells and postnatal lymphoid tissues via pathways dependent on and independent of Notch. Nat. Immunol. 13, 144–151 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, J. et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92–104 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zelante, T. et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372–385 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Li, S. et al. Aryl hydrocarbon receptor signaling cell intrinsically inhibits intestinal group 2 innate lymphoid cell function. Immunity 49, 915–928 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, L. H., Shin, J. H., Haggadone, M. D. & Sunwoo, J. B. The aryl hydrocarbon receptor is required for the maintenance of liver-resident natural killer cells. J. Exp. Med. 213, 2249–2257 (2016).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chun, E. et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity 51, 871–884 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fachi, J. L. et al. Acetate coordinates neutrophil and ILC3 responses against C. difficile through FFAR2. J. Exp. Med. https://doi.org/10.1084/jem.20190489 (2020).

  • Yang, W. et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity. Nat. Commun. 11, 4457 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thio, C. L., Chi, P. Y., Lai, A. C. & Chang, Y. J. Regulation of type 2 innate lymphoid cell-dependent airway hyperreactivity by butyrate. J. Allergy Clin. Immunol. 142, 1867–1883 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lewis, G. et al. Dietary fiber-induced microbial short-chain fatty acids suppress ILC2-dependent airway inflammation. Front. Immunol. 10, 2051 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Y. et al. Natural killer cells: friend or foe in metabolic diseases. Front. Immunol. 12, 614429 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Sullivan, T. E. et al. Adipose-resident group 1 innate lymphoid cells promote obesity-associated insulin resistance. Immunity 45, 428–441 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Molofsky, A. B. et al. Interleukin-33 and interferon-γ counter-regulate group 2 innate lymphoid cell activation during immune perturbation. Immunity 43, 161–174 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boulenouar, S. et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity 46, 273–286 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, H. et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nat. Commun. 10, 3254 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cuff, A. O. et al. The obese liver environment mediates conversion of NK cells to a less cytotoxic ILC1-like phenotype. Front. Immunol. 10, 2180 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hildreth, A. D. et al. Single-cell sequencing of human white adipose tissue identifies new cell states in health and obesity. Nat. Immunol. 22, 639–653 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moro, K. et al. Innate production of TH2 cytokines by adipose tissue-associated c-Kit+Sca-1+ lymphoid cells. Nature 463, 540–544 (2010). This is one of the seminal reports defining ILC2s and reveals their intimate association with adipose tissues.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hams, E., Locksley, R. M., McKenzie, A. N. & Fallon, P. G. Cutting edge: IL-25 elicits innate lymphoid type 2 and type II NKT cells that regulate obesity in mice. J. Immunol. 191, 5349–5353 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Molofsky, A. B. et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J. Exp. Med. 210, 535–549 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Qiu, Y. et al. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brestoff, J. R. et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, M. W. et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 74–87 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, K. D. et al. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fischer, K. et al. Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat. Med. 23, 623–630 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brestoff, J. R. & Artis, D. Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahlakoiv, T. et al. Stromal cells maintain immune cell homeostasis in adipose tissue via production of interleukin-33. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aax0416 (2019).

  • Spallanzani, R. G. et al. Distinct immunocyte-promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaw3658 (2019).

  • Klose, C. S. & Artis, D. Neuronal regulation of innate lymphoid cells. Curr. Opin. Immunol. 56, 94–99 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Chu, C., Artis, D. & Chiu, I. M. Neuroimmune interactions in the tissues. Immunity 52, 464–474 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cardoso, F. et al. Neuro-mesenchymal units control ILC2 and obesity via a brain–adipose circuit. Nature 597, 410–414 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sasaki, T. et al. Innate lymphoid cells in the induction of obesity. Cell Rep. 28, 202–217 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dalmas, E. et al. Interleukin-33-activated islet-resident innate lymphoid cells promote insulin secretion through myeloid cell retinoic acid production. Immunity 47, 928–942 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Newland, S. A. et al. Type 2 innate lymphoid cells control the development of atherosclerosis in mice. Nat. Commun. 8, 15781 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • O’Leary, C. E. et al. Bile acid-sensitive tuft cells regulate biliary neutrophil influx. Sci. Immunol. 7, eabj1080 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Satoh-Takayama, N. et al. Bacteria-induced group 2 innate lymphoid cells in the stomach provide immune protection through induction of IgA. Immunity 52, 635–649 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kim, H. Y. et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat. Med. 20, 54–61 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in diabetes. Nature 514, 237–241 (2014). This paper reveals how the intesinal IL-22 pathway is disrupted in metabolic diseases and how exogenous IL-22 can be harnessed as a therapeutic strategy.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hasnain, S. Z. et al. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress. Nat. Med. 20, 1417–1426 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hamaguchi, M. et al. Group 3 innate lymphoid cells protect steatohepatitis from high-fat-diet-induced toxicity. Front. Immunol. 12, 648754 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mao, K. et al. Innate and adaptive lymphocytes sequentially shape the gut microbiota and lipid metabolism. Nature 554, 255–259 (2018). This paper reveals how dynamic cross-talk between innate and adaptive lymphocytes shapes responses to microbiota, and lipid uptake or metabolism.

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lio, C. J. & Huang, S. C. Circles of life: linking metabolic and epigenetic cycles to immunity. Immunology 161, 165–174 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Britt, E. C., John, S. V., Locasale, J. W. & Fan, J. Metabolic regulation of epigenetic remodeling in immune cells. Curr. Opin. Biotechnol. 63, 111–117 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Phan, A. T., Goldrath, A. W. & Glass, C. K. Metabolic and epigenetic coordination of T cell and macrophage immunity. Immunity 46, 714–729 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fanucchi, S., Dominguez-Andres, J., Joosten, L. A. B., Netea, M. G. & Mhlanga, M. M. The intersection of epigenetics and metabolism in trained immunity. Immunity 54, 32–43 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Netea, M. G. et al. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Arguello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Subrahmanyam, P. B. & Maecker, H. T. CyTOF measurement of immunocompetence across major immune cell types. Curr. Protoc. Cytom. 82, 9.54.1–9.54.12 (2017).

    Google Scholar 

  • Hartmann, F. J. et al. Single-cell metabolic profiling of human cytotoxic T cells. Nat. Biotechnol. 39, 186–197 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ganesh, S. et al. Spatially resolved 3D metabolomic profiling in tissues. Sci. Adv. https://doi.org/10.1126/sciadv.abd0957 (2021).

  • Yuan, Z. et al. SEAM is a spatial single nuclear metabolomics method for dissecting tissue microenvironment. Nat. Methods 18, 1223–1232 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Related Articles