Metabolic

Measuring biological age using omics data

  • Beard, J. R. et al. The World report on ageing and health: a policy framework for healthy ageing. Lancet 387, 2145–2154 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Niccoli, T. & Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 22, R741–R752 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kennedy, B. K. et al. Geroscience: linking aging to chronic disease. Cell 159, 709–713 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 1194–1217 (2013). This landmark review organized a framework to think about ageing through the lens of multiple conserved cellular and molecular processes and has become highly influential in the field of ageing research.

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Partridge, L., Deelen, J. & Slagboom, P. E. Facing up to the global challenges of ageing. Nature 561, 45–56 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vijg, J. & Suh, Y. Genetics of longevity and aging. Annu. Rev. Med. 56, 193–212 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Helfand, S. L. & Rogina, B. Genetics of aging in the fruit fly, Drosophila melanogaster. Annu. Rev. Genet. 37, 329–348 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Singh, P. P., Demmitt, B. A., Nath, R. D. & Brunet, A. The genetics of aging: a vertebrate perspective. Cell 177, 200–220 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461–464 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kaplanis, J. et al. Quantitative analysis of population-scale family trees with millions of relatives. Science https://doi.org/10.1126/science.aam9309 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zenin, A. et al. Identification of 12 genetic loci associated with human healthspan. Commun. Biol. 2, 41 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deelen, J. et al. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat. Commun. 10, 3669 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Khan, S. S. et al. A null mutation in SERPINE1 protects against biological aging in humans. Sci. Adv. https://doi.org/10.1126/sciadv.aao1617 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martin, G. M., Bergman, A. & Barzilai, N. Genetic determinants of human health span and life span: progress and new opportunities. PLoS Genet. 3, e125 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Villeda, S. A. et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat. Med. 20, 659–663 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Roth, G. S. et al. Biomarkers of caloric restriction may predict longevity in humans. Science https://doi.org/10.1126/science.1071851 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, Y. et al. Reprogramming to recover youthful epigenetic information and restore vision. Nature 588, 124–129 (2020). This study experimentally demonstrated a direct link between alterations in DNA methylation in epigenetic injury response and regeneration, and a potential causal role for DNA demethylation enzymes in cellular ageing.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rando, T. A. & Chang, H. Y. Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148, 46–57 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Xu, M. et al. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24, 1246–1256 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baur, J. A. et al. Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337–342 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • De Miguel, Z. et al. Exercise plasma boosts memory and dampens brain inflammation via clusterin. Nature 600, 494–499 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392–395 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yousefzadeh, M. J. et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine 36, 18–28 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • de Jesus, B. B. et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol. Med. 4, 691–704 (2012).

    Article 
    CAS 

    Google Scholar 

  • Anisimov, V. N. Metformin: do we finally have an anti-aging drug? Cell Cycle 12, 3483–3489 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Martin-Montalvo, A. et al. Metformin improves healthspan and lifespan in mice. Nat. Commun. 4, 2192 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Alavez, S., Vantipalli, M. C., Zucker, D. J. S., Klang, I. M. & Lithgow, G. J. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 472, 226–229 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rebo, J. et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat. Commun. 7, 13363 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Anstey, K. J., Lord, S. R. & Smith, G. A. Measuring human functional age: a review of empirical findings. Exp. Aging Res. 22, 245–266 (1996).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Howlett, S. E., Rutenberg, A. D. & Rockwood, K. The degree of frailty as a translational measure of health in aging. Nat. Aging 1, 651–665 (2021).

    Article 

    Google Scholar 

  • Levine, M. E. Modeling the rate of senescence: can estimated biological age predict mortality more accurately than chronological age? J. Gerontol. A Biol. Sci. Med. Sci. 68, 667–674 (2013).

    PubMed 
    Article 

    Google Scholar 

  • Xia, X., Chen, W., McDermott, J. & Han, J.-D. J. Molecular and phenotypic biomarkers of aging. F1000Research 6, 860 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Ludwig, F. C. & Smoke, M. E. The measurement of biological age. Exp. Aging Res. 6, 497–522 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, W. et al. Three-dimensional human facial morphologies as robust aging markers. Cell Res. 25, 574–587 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sebastiani, P. et al. Biomarker signatures of aging. Aging Cell 16, 329–338 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kojima, G., Iliffe, S. & Walters, K. Frailty index as a predictor of mortality: a systematic review and meta-analysis. Age Ageing 47, 193–200 (2018).

    PubMed 
    Article 

    Google Scholar 

  • Comfort, A. Test-battery to measure ageing-rate in man. Lancet 294, 1411–1415 (1969).

    Article 

    Google Scholar 

  • Baker, G. T. & Sprott, R. L. Biomarkers of aging. Exp. Gerontol. 23, 223–239 (1988).

    PubMed 
    Article 

    Google Scholar 

  • Bobrov, E. et al. PhotoAgeClock: deep learning algorithms for development of non-invasive visual biomarkers of aging. Aging 10, 3249–3259 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sanders, J. L. & Newman, A. B. Telomere length in epidemiology: a biomarker of aging, age-related disease, both, or neither? Epidemiol. Rev. 35, 112–131 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Almanzar, N. et al. A single-cell transcriptomic atlas characterizes ageing tissues in the mouse. Nature 583, 590–595 (2020). This study demonstrates that, in mice, different organs experience different patterns and rates of molecular and cellular ageing, which highlights the need for more sophisticated ageing clocks to account for intra-individual ageing variation.

    CAS 
    Article 

    Google Scholar 

  • Schaum, N. et al. Ageing hallmarks exhibit organ-specific temporal signatures. Nature 583, 596–602 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, 3156 (2013). This study comprehensively investigated CpG methylation ageing clocks across multiple human tissues and cell lines and discovered that there are some widely conserved methylation changes that occur throughout the body with ageing, which may be related to cancer and other diseases of ageing.

    Article 

    Google Scholar 

  • Galkin, F. et al. Biohorology and biomarkers of aging: current state-of-the-art, challenges and opportunities. Ageing Res. Rev. 60, 101050 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, B. H. et al. DNA methylation-based measures of biological age: meta-analysis predicting time to death. Aging 8, 1844–1865 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levine, M. E. et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 10, 573–591 (2018). This study developed an innovative composite ageing score that incorporated chronological and biomarker measurements of age to train an improved second-generation DNA methylation ageing clock. The method has been influential in improving the performance and biological relevance of ageing clock models.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, A. T. et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging 11, 303–327 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tanaka, T. et al. Plasma proteomic signature of age in healthy humans. Aging Cell 17, e12799 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Zhang, Y. et al. DNA methylation signatures in peripheral blood strongly predict all-cause mortality. Nat. Commun. 8, 14617 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ocampo, A. et al. In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell 167, 1719–1733.e12 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sarkar, T. J. et al. Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells. Nat. Commun. 11, 1545 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bocklandt, S. et al. Epigenetic predictor of age. PLoS One 6, e14821 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Weidner, C. I. et al. Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 15, R24 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lin, Q. et al. DNA methylation levels at individual age-associated CpG sites can be indicative for life expectancy. Aging 8, 394–401 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vidal-Bralo, L., Lopez-Golan, Y. & Gonzalez, A. Simplified assay for epigenetic age estimation in whole blood of adults. Front. Genet. 7, 126 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fransquet, P. D., Wrigglesworth, J., Woods, R. L., Ernst, M. E. & Ryan, J. The epigenetic clock as a predictor of disease and mortality risk: a systematic review and meta-analysis. Clin. Epigenetics 11, 62 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fagnoni, F. F. et al. Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood 95, 2860–2868 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, Q. et al. Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54 (2019). This study demonstrates an important paradox in the training of first-generation ageing clocks: increasingly perfect prediction of chronological age by a clock trained only on chronological age reduces its ability to discover drivers of variation in biological ageing between people.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, Z. et al. Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Beerman, I. et al. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Verschoor, C. P. et al. Epigenetic age is associated with baseline and 3-year change in frailty in the Canadian longitudinal study on aging. Clin. Epigenetics 13, 163 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Maddock, J. et al. DNA methylation age and physical and cognitive aging. J. Gerontol. Ser. A 75, 504–511 (2020).

    CAS 
    Article 

    Google Scholar 

  • Sibbett, R. A. et al. DNA methylation-based measures of accelerated biological ageing and the risk of dementia in the oldest-old: a study of the Lothian Birth Cohort 1921. BMC Psychiatry 20, 91 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Kuo, P.-L., Moore, A. Z., Lin, F. R. & Ferrucci, L. Epigenetic age acceleration and hearing: observations from the Baltimore Longitudinal Study of Aging. Front. Aging Neurosci. 13, 790926 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McCrory, C. et al. GrimAge outperforms other epigenetic clocks in the prediction of age-related clinical phenotypes and all-cause mortality. J. Gerontol. Ser. A 76, 741–749 (2021).

    Article 

    Google Scholar 

  • Crimmins, E. M., Thyagarajan, B., Levine, M. E., Weir, D. R. & Faul, J. Associations of age, sex, race/ethnicity, and education with 13 epigenetic clocks in a nationally representative U.S. sample: the health and retirement study. J. Gerontol. Ser. A 76, 1117–1123 (2021).

    Article 

    Google Scholar 

  • Hillary, R. F. et al. An epigenetic predictor of death captures multi-modal measures of brain health. Mol. Psychiatry 26, 3806–3816 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Joyce, B. T. et al. Epigenetic age acceleration reflects long-term cardiovascular health. Circ. Res. 129, 770–781 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Shiau, S. et al. Epigenetic aging biomarkers associated with cognitive impairment in older African American adults with human immunodeficiency virus (HIV). Clin. Infect. Dis. 73, 1982–1991 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Belsky, D. W. et al. Quantification of the pace of biological aging in humans through a blood test, the DunedinPoAm DNA methylation algorithm. eLife 9, e54870 (2020). Here, the authors developed a DNA methylation clock surrogate for longitudinal health and biomarker measurements to more directly predict an individual’s ageing rate instead of relying on cross-sectional measures of relative biological age.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Belsky, D. W. et al. Quantification of biological aging in young adults. Proc. Natl Acad. Sci. USA 112, E4104–E4110 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rando, T. A. & Wyss-Coray, T. Asynchronous, contagious and digital aging. Nat. Aging 1, 29–35 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ahadi, S. et al. Personal aging markers and ageotypes revealed by deep longitudinal profiling. Nat. Med. 26, 83–90 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Levine, M. E., Lu, A. T., Bennett, D. A. & Horvath, S. Epigenetic age of the pre-frontal cortex is associated with neuritic plaques, amyloid load, and Alzheimer’s disease related cognitive functioning. Aging 7, 1198–1211 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford progeria syndrome and ex vivo studies. Aging 10, 1758–1775 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Choukrallah, M.-A., Hoeng, J., Peitsch, M. C. & Martin, F. Lung transcriptomic clock predicts premature aging in cigarette smoke-exposed mice. BMC Genomics 21, 291 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sillanpää, E. et al. Blood and skeletal muscle ageing determined by epigenetic clocks and their associations with physical activity and functioning. Clin. Epigenetics 13, 110 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Peters, M. J. et al. The transcriptional landscape of age in human peripheral blood. Nat. Commun. 6, 8570 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fleischer, J. G. et al. Predicting age from the transcriptome of human dermal fibroblasts. Genome Biol. 19, 221 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer, D. H. & Schumacher, B. BiT age: a transcriptome-based aging clock near the theoretical limit of accuracy. Aging Cell 20, e13320 (2021). This study developed multiple methodological innovations for training accurate and reproducible transcriptomic ageing clocks, and developed clocks with striking generalizable performance across multiple ageing treatment conditions in worms.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Holzscheck, N. et al. Modeling transcriptomic age using knowledge-primed artificial neural networks. NPJ Aging Mech. Dis. 7, 15 (2021). This study aimed to design a more transparent and biologically interpretable neural network ageing clock, showcasing some of the methods available to make inferences about ageing with these more complex models.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhang, W. et al. Comparison of RNA-seq and microarray-based models for clinical endpoint prediction. Genome Biol. 16, 133 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Pappireddi, N., Martin, L. & Wühr, M. A review on quantitative multiplexed proteomics. ChemBioChem 20, 1210–1224 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS One 5, e15004 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Menni, C. et al. Circulating proteomic signatures of chronological. Age. J. Gerontol. Ser. A 70, 809–816 (2015).

    CAS 
    Article 

    Google Scholar 

  • Ignjatovic, V. et al. Age-related differences in plasma proteins: how plasma proteins change from neonates to adults. PLoS One 6, e17213 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, J. et al. Profiling plasma peptides for the identification of potential ageing biomarkers in Chinese Han adults. PLoS One 7, e39726 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baird, G. S. et al. Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am. J. Pathol. 180, 446–456 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehallier, B. et al. Undulating changes in human plasma proteome profiles across the lifespan. Nat. Med. 25, 1843–1850 (2019). This study developed a highly predictive plasma proteomic ageing clock and showed relationships between the proteomic age gap and many ageing traits such as cognitive function and motor function. It also describes the non-linear patterns of proteomic ageing, which have implications for future ageing clock models.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tanaka, T. et al. Plasma proteomic biomarker signature of age predicts health and life span. eLife 9, e61073 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lehallier, B., Shokhirev, M. N., Wyss‐Coray, T. & Johnson, A. A. Data mining of human plasma proteins generates a multitude of highly predictive aging clocks that reflect different aspects of aging. Aging Cell 19, e13256 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Johnson, A. A., Shokhirev, M. N., Wyss-Coray, T. & Lehallier, B. Systematic review and analysis of human proteomics aging studies unveils a novel proteomic aging clock and identifies key processes that change with age. Ageing Res. Rev. 60, 101070 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Johnson, A. A., Shokhirev, M. N. & Lehallier, B. The protein inputs of an ultra-predictive aging clock represent viable anti-aging drug targets. Ageing Res. Rev. 70, 101404 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hipp, M. S., Kasturi, P. & Hartl, F. U. The proteostasis network and its decline in ageing. Nat. Rev. Mol. Cell Biol. 20, 421–435 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Tryggvason, K. & Wartiovaara, J. How does the kidney filter plasma? Physiology 20, 96–101 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Md Dom, Z. I. et al. Effect of TNFα stimulation on expression of kidney risk inflammatory proteins in human umbilical vein endothelial cells cultured in hyperglycemia. Sci. Rep. 11, 11133 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thanasupawat, T. et al. Slow off-rate modified aptamer (SOMAmer) proteomic analysis of patient-derived malignant glioma identifies distinct cellular proteomes. Int. J. Mol. Sci. 22, 9566 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yang, C. et al. Genomic atlas of the proteome from brain, CSF and plasma prioritizes proteins implicated in neurological disorders. Nat. Neurosci. 24, 1302–1312 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Conboy, I. M. et al. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 433, 760–764 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sinha, M. et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science 344, 649–652 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Loffredo, F. S. et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell 153, 828–839 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Eggel, A. & Wyss-Coray, T. A revival of parabiosis in biomedical research. Swiss Med. Wkly. https://doi.org/10.4414/smw.2014.13914 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Katsimpardi, L. et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630–634 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alkahest, Inc. A Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Tolerability of Pulsed GRF6019 Infusions in Subjects With Severe Alzheimer’s Disease https://clinicaltrials.gov/ct2/show/results/NCT03765762 (2021).

  • Rist, M. J. et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) study. PLoS One 12, e0183228 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Yu, Z. et al. Human serum metabolic profiles are age dependent. Aging Cell 11, 960–967 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Lawton, K. A. et al. Analysis of the adult human plasma metabolome. Pharmacogenomics 9, 383–397 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Menni, C. et al. Metabolomic markers reveal novel pathways of ageing and early development in human populations. Int. J. Epidemiol. 42, 1111–1119 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fischer, K. et al. Biomarker profiling by nuclear magnetic resonance spectroscopy for the prediction of all-cause mortality: an observational study of 17,345 Persons. PLoS Med. 11, e1001606 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Deelen, J. et al. A metabolic profile of all-cause mortality risk identified in an observational study of 44,168 individuals. Nat. Commun. 10, 3346 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • van den Akker, E. B. et al. Metabolic age based on the BBMRI-NL 1H-NMR metabolomics repository as biomarker of age-related disease. Circ. Genom. Precis. Med. 13, 541–547 (2020). This study developed a biobank-scale targeted metabolomic ageing clock that is predictive of mortality and cardiovascular outcomes.

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Robinson, O. et al. Determinants of accelerated metabolomic and epigenetic aging in a UK cohort. Aging Cell 19, e13149 (2020). This study compared multiple untargeted metabolomic methods for developing ageing clocks and additionally assessed their relationship to health traits and to the Horvath, Hannum and PhenoAge epigenetic ageing clocks.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hertel, J. et al. Measuring biological age via metabonomics: the metabolic age score. J. Proteome Res. 15, 400–410 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bingol, K. Recent advances in targeted and untargeted metabolomics by NMR and MS/NMR methods. High Throughput 7, 9 (2018).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Gertsman, I. & Barshop, B. A. Promises and pitfalls of untargeted metabolomics. J. Inherit. Metab. Dis. 41, 355–366 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: overview and workflow. TrAC. Trends Anal. Chem. 82, 425–442 (2016).

    CAS 
    Article 

    Google Scholar 

  • Krumsiek, J. et al. Mining the unknown: a systems approach to metabolite identification combining genetic and metabolic information. PLoS Genet. 8, e1003005 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • López-Otín, C., Galluzzi, L., Freije, J. M. P., Madeo, F. & Kroemer, G. Metabolic control of longevity. Cell 166, 802–821 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Varki, A. Biological roles of glycans. Glycobiology 27, 3–49 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Machin, D. R. et al. Advanced age results in a diminished endothelial glycocalyx. Am. J. Physiol. Heart Circ. Physiol. 315, H531–H539 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Krištić, J. et al. Glycans are a novel biomarker of chronological and biological ages. J. Gerontol. Ser. A 69, 779–789 (2014).

    Article 
    CAS 

    Google Scholar 

  • Merleev, A. A. et al. A site-specific map of the human plasma glycome and its age and gender-associated alterations. Sci. Rep. 10, 17505 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Badal, V. D. et al. The gut microbiome, aging, and longevity: a systematic review. Nutrients 12, 3759 (2020).

    PubMed Central 
    Article 

    Google Scholar 

  • Collino, S. et al. Metabolic signatures of extreme longevity in Northern Italian centenarians reveal a complex remodeling of lipids, amino acids, and gut microbiota metabolism. PLoS One 8, e56564 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rampelli, S. et al. Functional metagenomic profiling of intestinal microbiome in extreme ageing. Aging 5, 902–912 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bárcena, C. et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat. Med. 25, 1234–1242 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Cani, P. D. & de Vos, W. M. Next-generation beneficial microbes: the case of Akkermansia muciniphila. Front. Microbiol. 8, 1765 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sato, Y. et al. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature 599, 458–464 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Galkin, F. et al. Human gut microbiome aging clock based on taxonomic profiling and deep learning. iScience 23, 101199 (2020). The first attempt to develop an ageing clock based on microbiome sequencing data; the authors compared multiple methods, settling on a simple neural network architecture to predict age and detect accelerated microbiome ageing in patients with diabetes mellitus.

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Yardımcı, G. G. et al. Measuring the reproducibility and quality of Hi-C data. Genome Biol. 20, 57 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Thurman, R. E. et al. The accessible chromatin landscape of the human genome. Nature 489, 75–82 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klemm, S. L., Shipony, Z. & Greenleaf, W. J. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20, 207–220 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kudlow, B. A., Kennedy, B. K. & Monnat, R. J. Werner and Hutchinson–Gilford progeria syndromes: mechanistic basis of human progeroid diseases. Nat. Rev. Mol. Cell Biol. 8, 394–404 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, W. et al. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science https://doi.org/10.1126/science.aaa1356 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moskowitz, D. M. et al. Epigenomics of human CD8 T cell differentiation and aging. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aag0192 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pulko, V. et al. Human memory T cells with a naive phenotype accumulate with aging and respond to persistent viruses. Nat. Immunol. 17, 966–975 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ucar, D. et al. The chromatin accessibility signature of human immune aging stems from CD8+ T cells. J. Exp. Med. 214, 3123–3144 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Goronzy, J. J., Hu, B., Kim, C., Jadhav, R. R. & Weyand, C. M. Epigenetics of T cell aging. J. Leukoc. Biol. 104, 691–699 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bell, C. G. et al. DNA methylation aging clocks: challenges and recommendations. Genome Biol. 20, 249 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zhou, W. et al. DNA methylation loss in late-replicating domains is linked to mitotic cell division. Nat. Genet. 50, 591–602 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lee, J.-Y. et al. Misexpression of genes lacking CpG islands drives degenerative changes during aging. Sci. Adv. https://doi.org/10.1126/sciadv.abj9111 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, X. et al. Longitudinal trajectories, correlations and mortality associations of nine biological ages across 20-years follow-up. eLife 9, e51507 (2020). One of the few current papers that compares multiple omics ageing-clock measurements longitudinally; this study found that the age gaps for the different clocks tested are largely uncorrelated.

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bose, M. et al. Evaluation of microarray-based DNA methylation measurement using technical replicates: the Atherosclerosis Risk In Communities (ARIC) study. BMC Bioinformatics 15, 312–312 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Logue, M. W. et al. The correlation of methylation levels measured using Illumina 450K and EPIC BeadChips in blood samples. Epigenomics 9, 1363–1371 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sugden, K. et al. Patterns of reliability: assessing the reproducibility and integrity of DNA methylation measurement. Patterns 1, 100014 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jansen, R. et al. An integrative study of five biological clocks in somatic and mental health. eLife 10, e59479 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Zahn, J. M. et al. AGEMAP: a gene expression database for aging in mice. PLoS Genet. 3, e201 (2007).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Arrojo e Drigo, R. et al. Age Mosaicism across multiple scales in adult tissues. Cell Metab. 30, 343–351.e3 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Işıldak, U., Somel, M., Thornton, J. M. & Dönertaş, H. M. Temporal changes in the gene expression heterogeneity during brain development and aging. Sci. Rep. 10, 4080 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tuttle, C. S. L. et al. Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19, e13083 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Hopkins, A. L. & Groom, C. R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elsevier. Tietz Textbook of Clinical Chemistry and Molecular Diagnostics-6th Edition https://www.elsevier.com/books/tietz-textbook-of-clinical-chemistry-and-molecular-diagnostics/rifai/978-0-323-35921-4 (2017).

  • Hormozdiari, F. et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 99, 1245–1260 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Emdin, C. A., Khera, A. V. & Kathiresan, S. Mendelian randomization. JAMA 318, 1925–1926 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Lu, A. T. et al. GWAS of epigenetic aging rates in blood reveals a critical role for TERT. Nat. Commun. 9, 387 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McCartney, D. L. et al. Genome-wide association studies identify 137 genetic loci for DNA methylation biomarkers of aging. Genome Biol. 22, 194 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lu, A. T. et al. DNA methylation-based estimator of telomere length. Aging 11, 5895–5923 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nelson, P. G., Promislow, D. E. L. & Masel, J. Biomarkers for aging identified in cross-sectional studies tend to be non-causative. J. Gerontol. Ser. A 75, 466–472 (2020). This study demonstrated important limitations of ageing-clock models that are built with cross-sectional cohort studies and used simulation studies to show that the use of more complex second-generation ageing score training objectives overcomes some of these limitations.

    Article 

    Google Scholar 

  • Delgado-Rodríguez, M. & Llorca, J. Bias. J. Epidemiol. Commun. Health 58, 635–641 (2004).

    Article 

    Google Scholar 

  • Zhou, Z., Rahme, E., Abrahamowicz, M. & Pilote, L. Survival bias associated with time-to-treatment initiation in drug effectiveness evaluation: a comparison of methods. Am. J. Epidemiol. 162, 1016–1023 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nat. Aging 1, 598–615 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Alpert, A. et al. A clinically meaningful metric of immune age derived from high-dimensional longitudinal monitoring. Nat. Med. 25, 487–495 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nakamura, E., Miyao, K. & Ozeki, T. Assessment of biological age by principal component analysis. Mech. Ageing Dev. 46, 1–18 (1988).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pyrkov, T. V. et al. Extracting biological age from biomedical data via deep learning: too much of a good thing? Sci. Rep. 8, 5210 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Pyrkov, T. V. et al. Quantitative characterization of biological age and frailty based on locomotor activity records. Aging 10, 2973–2990 (2022).

    Article 

    Google Scholar 

  • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Márquez, E. J. et al. Sexual-dimorphism in human immune system aging. Nat. Commun. 11, 751 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Holzscheck, N. et al. Multi-omics network analysis reveals distinct stages in the human aging progression in epidermal tissue. Aging 12, 12393–12409 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Bibikova, M. et al. Genome-wide DNA methylation profiling using Infinium® assay. Epigenomics 1, 177–200 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bibikova, M. et al. High density DNA methylation array with single CpG site resolution. Genomics 98, 288–295 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fahy, G. M. et al. Reversal of epigenetic aging and immunosenescent trends in humans. Aging Cell 18, e13028 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. Analyst 134, 1781–1785 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mamoshina, P. et al. Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification. Front. Genet. 9, 242 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Campisi, J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Campisi, J. Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bussian, T. J. et al. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 562, 578–582 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baker, D. J. et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479, 232–236 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Baker, D. J. et al. Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature 530, 184–189 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Childs, B. G. et al. Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science 354, 472–477 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jeon, O. H. et al. Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nat. Med. 23, 775–781 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coppé, J.-P. et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6, e301 (2008).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Coppé, J.-P., Desprez, P.-Y., Krtolica, A. & Campisi, J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu. Rev. Pathol. 5, 99–118 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B Methodol. 58, 267–288 (1996).

    Google Scholar 

  • Hilt, D. E. & Seegrist, D. W. Ridge: a computer program for calculating ridge regression estimates. Research Note NE-236. 7p (U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, 1977).

  • Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol. 67, 301–320 (2005).

    Article 

    Google Scholar 

  • Thompson, M. J. et al. A multi-tissue full lifespan epigenetic clock for mice. Aging 10, 2832–2854 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Platt, J. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10, 61–74 (1999).

    Google Scholar 

  • Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article 

    Google Scholar 

  • Hinton, G. Connectionist learning procedures. Artif. Intell. 40, 185–234 (1989).

    Article 

    Google Scholar 

  • Alzubaidi, L. et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 53 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fedor Galkin, P. M., Kirill, K., Denis, S. & Alex, Z. DeepMAge: a methylation aging clock developed with deep learning. Aging Dis. 12, 1252–1262 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Ma, J. et al. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 15, 290–298 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shrikumar, A., Greenside, P. & Kundaje, A. In Proceedings of the 34th International Conference on Machine Learning 3145–3153 (PMLR, 2017).

  • Related Articles