Metabolic

Magnesium stable isotope composition, but not concentration, responds to obesity and early insulin-resistant conditions in minipig

  • Misra, V. K. & Draper, D. E. On the role of magnesium ions in RNA stability. Biopolymers 48, 113–135 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Apell, H.-J., Hitzler, T. & Schreiber, G. Modulation of the Na, K-ATPase by magnesium ions. Biochemistry 56, 1005–1016 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Iseri, L. T. & French, J. H. Magnesium: Nature’s physiologic calcium blocker. Am. Heart J. 108, 188–193 (1984).

    CAS 
    PubMed 

    Google Scholar 

  • Rubin, H. Central role for magnesium in coordinate control of metabolism and growth in animal cells. Proc. Natl. Acad. Sci. USA 72, 3551–3555 (1975).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • de Baaij, J. H. F., Hoenderop, J. G. J. & Bindels, R. J. M. Magnesium in man: Implications for health and disease. Physiol. Rev. 95, 1–46 (2015).

    PubMed 

    Google Scholar 

  • Association, A. D. Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014).

    Google Scholar 

  • Chatterjee, S., Khunti, K. & Davies, M. J. Type 2 diabetes. Lancet 389, 2239–2251 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Gommers, L. M. M., Hoenderop, J. G. J., Bindels, R. J. M. & de Baaij, J. H. F. Hypomagnesemia in type 2 diabetes: A vicious circle?. Diabetes 65, 3–13 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Pham, P.-C.T., Pham, P.-M.T., Pham, S. V., Miller, J. M. & Pham, P.-T.T. Hypomagnesemia in patients with type 2 diabetes. Clin. J. Am. Soc. Nephrol. 2, 366–373 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Mather, H. M. et al. Hypomagnesaemia in diabetes. Clin. Chim. Acta 95, 235–242 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • Hubbard, S. R. Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572–5581 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kurstjens, S. et al. Determinants of hypomagnesemia in patients with type 2 diabetes mellitus. Eur. J. Endocrinol. 176, 11–19 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Viering, D. H. H. M., de Baaij, J. H. F., Walsh, S. B., Kleta, R. & Bockenhauer, D. Genetic causes of hypomagnesemia, a clinical overview. Pediatr. Nephrol. 32, 1123–1135 (2017).

    PubMed 

    Google Scholar 

  • Peacock, J. M. et al. Serum magnesium and risk of sudden cardiac death in the Atherosclerosis Risk in Communities (ARIC) Study. Am. Heart J. 160, 464–470 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Veronese, N. et al. Effect of magnesium supplementation on glucose metabolism in people with or at risk of diabetes: A systematic review and meta-analysis of double-blind randomized controlled trials. Eur. J. Clin. Nutr. 70, 1354–1359 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Rodríguez-Morán, M., Simental-Mendía, L. E., Gamboa-Gómez, C. I. & Guerrero-Romero, F. Oral magnesium supplementation and metabolic syndrome: A randomized double-blind placebo-controlled clinical trial. Adv. Chronic Kidney Dis. 25, 261–266 (2018).

    PubMed 

    Google Scholar 

  • Grigoryan, R. et al. Multi-collector ICP-mass spectrometry reveals changes in the serum Mg isotopic composition in diabetes type I patients. J. Anal. At. Spectrom. 34, 1514–1521 (2019).

    CAS 

    Google Scholar 

  • Bigeleisen, J. & Mayer, M. G. Calculation of equilibrium constants for isotopic exchange reactions. J. Chem. Phys. 15, 261–267 (1947).

    ADS 
    CAS 

    Google Scholar 

  • Bigeleisen, J. The relative reaction velocities of isotopic molecules. J. Chem. Phys. 17, 675–678 (1949).

    ADS 
    CAS 

    Google Scholar 

  • McKeegan, K. D. et al. Isotopic compositions of cometary matter returned by stardust. Science 314, 1724–1728 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Jouzel, J. et al. Vostok ice core: A continuous isotope temperature record over the last climatic cycle (160,000 years). Nature 329, 403–408 (1987).

    ADS 
    CAS 

    Google Scholar 

  • Albarède, F., Télouk, P. & Balter, V. Medical applications of isotope metallomics. Rev. Mineral. Geochem. 82, 851–885 (2017).

    Google Scholar 

  • Balter, V. et al. Natural variations of copper and sulfur stable isotopes in blood of hepatocellular carcinoma patients. PNAS 112, 982–985 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Télouk, P. et al. Copper isotope effect in serum of cancer patients. A pilot study. Metallomics 7, 299–308 (2015).

    PubMed 

    Google Scholar 

  • Lobo, L. et al. Elemental and isotopic analysis of oral squamous cell carcinoma tissues using sector-field and multi-collector ICP-mass spectrometry. Talanta 165, 92–97 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Costas-Rodríguez, M. et al. Body distribution of stable copper isotopes during the progression of cholestatic liver disease induced by common bile duct ligation in mice. Metallomics 11, 1093–1103 (2019).

    PubMed 

    Google Scholar 

  • Lamboux, A. et al. The blood copper isotopic composition is a prognostic indicator of the hepatic injury in Wilson disease. Metallomics 12, 1781–1790 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Moynier, F., Creech, J., Dallas, J. & Le Borgne, M. Serum and brain natural copper stable isotopes in a mouse model of Alzheimer’s disease. Sci. Rep. 9, 11894 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sauzéat, L. et al. Isotopic evidence for disrupted copper metabolism in amyotrophic lateral sclerosis. iScience 6, 264–271 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Krayenbuehl, P.-A., Walczyk, T., Schoenberg, R., von Blanckenburg, F. & Schulthess, G. Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood 105, 3812–3816 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Anoshkina, Y. et al. Iron isotopic composition of blood serum in anemia of chronic kidney disease. Metallomics 9, 517–524 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Morgan, J. L. L. et al. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes. Proc. Natl. Acad. Sci. USA 109, 9989–9994 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eisenhauer, A. et al. Calcium isotope ratios in blood and urine: A new biomarker for the diagnosis of osteoporosis. Bone Rep. 10, 100200 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Isaji, Y. et al. Magnesium isotope fractionation during synthesis of chlorophyll a and bacteriochlorophyll a of benthic phototrophs in hypersaline environments. ACS Earth Space Chem. 3, 1073–1079 (2019).

    ADS 
    CAS 

    Google Scholar 

  • Pokharel, R. et al. Magnesium stable isotope fractionation on a cellular level explored by cyanobacteria and black fungi with implications for higher plants. Environ. Sci. Technol. 52, 12216–12224 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Bolou-Bi, E. B., Poszwa, A., Leyval, C. & Vigier, N. Experimental determination of magnesium isotope fractionation during higher plant growth. Geochim. Cosmochim. Acta 74, 2523–2537 (2010).

    ADS 
    CAS 

    Google Scholar 

  • Wang, Y. et al. Magnesium isotope fractionation reflects plant response to magnesium deficiency in magnesium uptake and allocation: A greenhouse study with wheat. Plant Soil 455, 93–105 (2020).

    CAS 

    Google Scholar 

  • Martin, J. E., Vance, D. & Balter, V. Natural variation of magnesium isotopes in mammal bones and teeth from two South African trophic chains. Geochim. Cosmochim. Acta 130, 12–20 (2014).

    ADS 
    CAS 

    Google Scholar 

  • Martin, J. E., Vance, D. & Balter, V. Magnesium stable isotope ecology using mammal tooth enamel. PNAS 112, 430–435 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • DeFronzo, R. A., Tobin, J. D. & Andres, R. Glucose clamp technique: A method for quantifying insulin secretion and resistance. Am. J. Physiol.-Endocrinol. Metab. 237, E214 (1979).

    CAS 

    Google Scholar 

  • Kim, J. K. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. In Type 2 Diabetes: Methods and Protocols, Methods in Molecular Biology (ed. Stocker, C.) 221–238 (Humana Press, 2009).

    Google Scholar 

  • DeFronzo, R. A., Hendler, R. & Simonson, D. Insulin resistance is a prominent feature of insulin-dependent diabetes. Diabetes 31, 795–801 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • Balter, V. et al. Contrasting Cu, Fe, and Zn isotopic patterns in organs and body fluids of mice and sheep, with emphasis on cellular fractionation. Metallomics 5, 1470–1482 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, B., Podolskiy, D. I., Mariotti, M., Seravalli, J. & Gladyshev, V. N. Systematic age-, organ-, and diet-associated ionome remodeling and the development of ionomic aging clocks. Aging Cell 19, e13119 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Morel, J.-D. et al. The mouse metallomic landscape of aging and metabolism. Nat. Commun. 13, 607 (2022).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grigoryan, R., Costas-Rodríguez, M., Vandenbroucke, R. E. & Vanhaecke, F. High-precision isotopic analysis of Mg and Ca in biological samples using multi-collector ICP-mass spectrometry after their sequential chromatographic isolation—Application to the characterization of the body distribution of Mg and Ca isotopes in mice. Anal. Chim. Acta 1130, 137–145 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Goff, S. L., Albalat, E., Dosseto, A., Godin, J.-P. & Balter, V. Determination of magnesium isotopic ratios of biological reference materials via multi-collector inductively coupled plasma mass spectrometry. Rapid Commun. Mass Spectrom. 35, e9074 (2021).

    PubMed 

    Google Scholar 

  • DeRocher, K. A. et al. Chemical gradients in human enamel crystallites. Nature 583, 66–71 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Johansen, T., Hansen, H. S., Richelsen, B. & Malmlöf, K. The obese Göttingen minipig as a model of the metabolic syndrome: dietary effects on obesity, insulin sensitivity, and growth hormone profile. Comp. Med. 51, 150–155 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Coelho, P. G. et al. Effect of obesity or metabolic syndrome and diabetes on osseointegration of dental implants in a miniature swine model: A pilot study. J. Oral Maxillofac. Surg. 76, 1677–1687 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saltiel, A. R. & Kahn, C. R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414, 799–806 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Elin, R. J. Assessment of magnesium status. Clin. Chem. 33, 1965–1970 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Koopmans, S. J., van der Meulen, J., Dekker, R., Corbijn, H. & Mroz, Z. Diurnal variation in insulin-stimulated systemic glucose and amino acid utilization in pigs fed with identical meals at 12-hour intervals. Horm. Metab. Res. 38, 607–613 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Koopmans, S. J., Maassen, J. A., Radder, J. K. & Frölich, M. In vivo insulin responsiveness for glucose uptake and production at eu- and hyperglycemic levels in normal and diabetic rats. Biochimica et Biophysica Acta (BBA) General Subjects 1115, 230–238 (1992).

    CAS 

    Google Scholar 

  • Koopmans, S. J. et al. Association of insulin resistance with hyperglycemia in streptozotocin-diabetic pigs: Effects of metformin at isoenergetic feeding in a type 2–like diabetic pig model. Metabolism 55, 960–971 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Related Articles