Metabolic

Chronic oligodendrocyte injury in central nervous system pathologies

  • Funfschilling, U. et al. Glycolytic oligodendrocytes maintain myelin and long-term axonal integrity. Nature 485, 517–521 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saab, A. S., Tzvetanova, I. D. & Nave, K. A. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr. Opin. Neurobiol. 23, 1065–1072 (2013).

    PubMed 

    Google Scholar 

  • Young, K. M. et al. Oligodendrocyte dynamics in the healthy adult CNS: evidence for myelin remodeling. Neuron 77, 873–885 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hughes, E. G., Orthmann-Murphy, J. L., Langseth, A. J. & Bergles, D. E. Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat. Neurosci. 21, 696–706 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hill, R. A., Li, A. M. & Grutzendler, J. Lifelong cortical myelin plasticity and age-related degeneration in the live mammalian brain. Nat. Neurosci. 21, 683–695 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, S. H., Fukaya, M., Yang, J. K., Rothstein, J. D. & Bergles, D. E. NG2+ CNS glial progenitors remain committed to the oligodendrocyte lineage in postnatal life and following neurodegeneration. Neuron 68, 668–681 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeung, M. S. et al. Dynamics of oligodendrocyte generation and myelination in the human brain. Cell 159, 766–774 (2014).

    PubMed 

    Google Scholar 

  • Hess, K. et al. Lesion stage-dependent causes for impaired remyelination in MS. Acta Neuropathol. 140, 359–375 (2020). This paper identified oligodendrocyte lineage cell responses associated with remyelination failure in multiple sclerosis lesions at different stages of damage and repair, identifying oligodendrocyte loss as a feature of poor remyelination in chronic lesions.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prineas, J. W. & Parratt, J. D. Oligodendrocytes and the early multiple sclerosis lesion. Ann. Neurol. 72, 18–31 (2012).

    PubMed 

    Google Scholar 

  • Rodriguez, M., Scheithauer, B. W., Forbes, G. & Kelly, P. J. Oligodendrocyte injury is an early event in lesions of multiple sclerosis. Mayo Clin. Proc. 68, 627–636 (1993).

    PubMed 

    Google Scholar 

  • Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liddelow, S. A. et al. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541, 481–487 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rothhammer, V. et al. Microglial control of astrocytes in response to microbial metabolites. Nature 557, 724–728 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wheeler, M. A. et al. MAFG-driven astrocytes promote CNS inflammation. Nature 578, 593–599 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wheeler, M. A., Rothhammer, V. & Quintana, F. J. Control of immune-mediated pathology via the aryl hydrocarbon receptor. J. Biol. Chem. 292, 12383–12389 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lampron, A. et al. Inefficient clearance of myelin debris by microglia impairs remyelinating processes. J. Exp. Med. 212, 481–495 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Healy, L. M. et al. MerTK is a functional regulator of myelin phagocytosis by human myeloid cells. J. Immunol. 196, 3375–3384 (2016).

    PubMed 

    Google Scholar 

  • Cui, Q. L. et al. Sublethal oligodendrocyte injury: a reversible condition in multiple sclerosis? Ann. Neurol. 81, 811–824 (2017).

    PubMed 

    Google Scholar 

  • Hoffmann, A. et al. Oligodendroglial alpha-synucleinopathy-driven neuroinflammation in multiple system atrophy. Brain Pathol. 29, 380–396 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meissner, W. G. et al. Multiple system atrophy: recent developments and future perspectives. Mov. Disord. 34, 1629–1642 (2019).

    PubMed 

    Google Scholar 

  • Bugiani, M., Vuong, C., Breur, M. & van der Knaap, M. S. Vanishing white matter: a leukodystrophy due to astrocytic dysfunction. Brain Pathol. 28, 408–421 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Azevedo, C. et al. Parkinson’s disease and multiple system atrophy patient iPSC-derived oligodendrocytes exhibit alpha-synuclein-induced changes in maturation and immune reactive properties. Proc. Natl Acad. Sci. USA 119, e2111405119 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nasrabady, S. E., Rizvi, B., Goldman, J. E. & Brickman, A. M. White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes. Acta Neuropathol. Commun. 6, 22 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Eluvathingal, T. J. et al. Abnormal brain connectivity in children after early severe socioemotional deprivation: a diffusion tensor imaging study. Pediatrics 117, 2093–2100 (2006).

    PubMed 

    Google Scholar 

  • Makinodan, M., Rosen, K. M., Ito, S. & Corfas, G. A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337, 1357–1360 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dietz, A. G., Goldman, S. A. & Nedergaard, M. Glial cells in schizophrenia: a unified hypothesis. Lancet Psychiatry 7, 272–281 (2020).

    PubMed 

    Google Scholar 

  • Raabe, F. J. et al. Oligodendrocytes as a new therapeutic target in schizophrenia: from histopathological findings to neuron-oligodendrocyte interaction. Cells 8, https://doi.org/10.3390/cells8121496 (2019).

  • Galvez-Contreras, A. Y., Zarate-Lopez, D., Torres-Chavez, A. L. & Gonzalez-Perez, O. Role of oligodendrocytes and myelin in the pathophysiology of autism spectrum disorder. Brain Sci. 10, https://doi.org/10.3390/brainsci10120951 (2020).

  • van Tilborg, E. et al. Impaired oligodendrocyte maturation in preterm infants: Potential therapeutic targets. Prog. Neurobiol. 136, 28–49 (2016).

    PubMed 

    Google Scholar 

  • Cui, Q. L. et al. Oligodendrocyte progenitor cell susceptibility to injury in multiple sclerosis. Am. J. Pathol. 183, 516–525 (2013).

    PubMed 

    Google Scholar 

  • Galluzzi, L. et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 25, 486–541 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edinger, A. L. & Thompson, C. B. Death by design: apoptosis, necrosis and autophagy. Curr. Opin. Cell Biol. 16, 663–669 (2004).

    PubMed 

    Google Scholar 

  • Barnett, M. H. & Prineas, J. W. Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann. Neurol. 55, 458–468 (2004).

    PubMed 

    Google Scholar 

  • Lucchinetti, C. F., Bruck, W. & Lassmann, H. Evidence for pathogenic heterogeneity in multiple sclerosis. Ann. Neurol. 56, 308 (2004).

    PubMed 

    Google Scholar 

  • Casaccia, P. & Boddeke, E. Foreword. Glia 68, 1551–1553 (2020).

    PubMed 

    Google Scholar 

  • Saikali, P. et al. NKG2D-mediated cytotoxicity toward oligodendrocytes suggests a mechanism for tissue injury in multiple sclerosis. J. Neurosci. 27, 1220–1228 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaguia, F. et al. Cytotoxic NKG2C+ CD4 T cells target oligodendrocytes in multiple sclerosis. J. Immunol. 190, 2510–2518 (2013).

    PubMed 

    Google Scholar 

  • Larochelle, C. et al. Pro-inflammatory T helper 17 directly harms oligodendrocytes in neuroinflammation. Proc. Natl Acad. Sci. USA 118, https://doi.org/10.1073/pnas.2025813118 (2021). This study demonstrated that direct contact between Th17 T lymphocytes and oligodendrocytes induces oligodendrocyte stress, reduces myelinaton, and increases cell death.

  • Jamann, H. et al. Contact-dependent granzyme B-mediated cytotoxicity of Th17-polarized cells toward human oligodendrocytes. Front. Immunol. 13, https://doi.org/10.3389/fimmu.2022.850616 (2022).

  • Ludwin, S. K. & Johnson, E. S. Evidence for a “dying-back” gliopathy in demyelinating disease. Ann. Neurol. 9, 301–305 (1981).

    PubMed 

    Google Scholar 

  • Pernin, F. et al. Diverse injury responses of human oligodendrocyte to mediators implicated in multiple sclerosis. Brain https://doi.org/10.1093/brain/awac075 (2022). This study identified the stress responses in primary human oligodendrocytes following exposure to injury mediators, revealing mechanisms by which oligodendrocyte process retraction (and therefore demyelination) may occur.

    Article 
    PubMed 

    Google Scholar 

  • Kast, D. J. & Dominguez, R. The Cytoskeleton-Autophagy Connection. Curr. Biol. 27, R318–R326 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, L. et al. Raf-1/CK2 and RhoA/ROCK signaling promote TNF-alpha-mediated endothelial apoptosis via regulating vimentin cytoskeleton. Toxicology 389, 74–84 (2017).

    PubMed 

    Google Scholar 

  • Wosik, K. et al. Oligodendrocyte injury in multiple sclerosis: a role for p53. J. Neurochem. 85, 635–644 (2003).

    PubMed 

    Google Scholar 

  • Nicaise, A. M. et al. Cellular senescence in progenitor cells contributes to diminished remyelination potential in progressive multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 9030–9039 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Absinta, M. et al. A lymphocyte-microglia-astrocyte axis in chronic active multiple sclerosis. Nature 597, 709–714 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Prineas, J. W. et al. Immunopathology of secondary-progressive multiple sclerosis. Ann. Neurol. 50, 646–657 (2001).

    PubMed 

    Google Scholar 

  • Dhuriya, Y. K. & Sharma, D. Necroptosis: a regulated inflammatory mode of cell death. J. Neuroinflammation 15, 199 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ofengeim, D. et al. Activation of necroptosis in multiple sclerosis. Cell Rep. 10, 1836–1849 (2015). This study revealed that oligodendrocyte cell death via controlled necrosis, termed necroptosis, is a feature of demyelination in multiple sclerosis.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, A. F. et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nat. Neurosci. 22, 1046–1052 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. et al. RIP1 kinase inhibitor halts the progression of an immune-induced demyelination disease at the stage of monocyte elevation. Proc. Natl Acad. Sci. USA 116, 5675–5680 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zelic, M. et al. RIPK1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell Rep. 35, 109112 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jurewicz, A. et al. Tumour necrosis factor-induced death of adult human oligodendrocytes is mediated by apoptosis inducing factor. Brain 128, 2675–2688 (2005).

    PubMed 

    Google Scholar 

  • McKenzie, B. A. et al. Caspase-1 inhibition prevents glial inflammasome activation and pyroptosis in models of multiple sclerosis. Proc. Natl Acad. Sci. USA 115, E6065–E6074 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hou, J. et al. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat. Cell Biol. 22, 1264–1275 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mahad, D. H., Trapp, B. D. & Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 14, 183–193 (2015).

    PubMed 

    Google Scholar 

  • Lassmann, H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J. Neurol. Sci. 206, 187–191 (2003).

    PubMed 

    Google Scholar 

  • Lassmann, H. & van Horssen, J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys. Acta 1862, 506–510 (2016).

    PubMed 

    Google Scholar 

  • Trapp, B. D. & Stys, P. K. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 8, 280–291 (2009).

    PubMed 

    Google Scholar 

  • D’Haeseleer, M. et al. Cerebral hypoperfusion: a new pathophysiologic concept in multiple sclerosis. J. Cereb. Blood Flow. Metab. 35, 1406–1410 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Witte, M. E., Mahad, D. J., Lassmann, H. & van Horssen, J. Mitochondrial dysfunction contributes to neurodegeneration in multiple sclerosis. Trends Mol. Med. 20, 179–187 (2014).

    PubMed 

    Google Scholar 

  • Davies, A. L. et al. Neurological deficits caused by tissue hypoxia in neuroinflammatory disease. Ann. Neurol. 74, 815–825 (2013).

    PubMed 

    Google Scholar 

  • Desai, R. A. et al. Cause and prevention of demyelination in a model multiple sclerosis lesion. Ann. Neurol. 79, 591–604 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fernandes, M. G. F. et al. Age-related injury responses of human oligodendrocytes to metabolic insults: link to BCL-2 and autophagy pathways. Commun. Biol. 4, 20 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, Y. et al. Autosis is a Na+,K+-ATPase-regulated form of cell death triggered by autophagy-inducing peptides, starvation, and hypoxia-ischemia. Proc. Natl Acad. Sci. USA 110, 20364–20371 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Maiuri, M. C., Zalckvar, E., Kimchi, A. & Kroemer, G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 8, 741–752 (2007).

    PubMed 

    Google Scholar 

  • Bonapace, L. et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J. Clin. Invest. 120, 1310–1323 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Forte, M. et al. Cyclophilin D inactivation protects axons in experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Proc. Natl Acad. Sci. USA 104, 7558–7563 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jhelum, P. et al. Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J. Neurosci. 40, 9327–9341 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jakel, S. et al. Altered human oligodendrocyte heterogeneity in multiple sclerosis. Nature 566, 543–547 (2019). This was the first study to demonstrate human oligodendrocyte transcriptional heterogeneity in health and in multiple sclerosis, showing a shift in mature oligodendrocyte subpopulations with disease.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Falcao, A. M. et al. Disease-specific oligodendrocyte lineage cells arise in multiple sclerosis. Nat. Med. 24, 1837–1844 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Seeker, L. A. et al. Marked regional glial heterogeneity in the human white matter of the central nervous system. Preprint at bioRxiv https://doi.org/10.1101/2022.03.22.485367 (2022).

  • Bechler, M. E., Byrne, L. & Ffrench-Constant, C. CNS myelin sheath lengths are an intrinsic property of oligodendrocytes. Curr. Biol. 25, 2411–2416 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vigano, F., Mobius, W., Gotz, M. & Dimou, L. Transplantation reveals regional differences in oligodendrocyte differentiation in the adult brain. Nat. Neurosci. 16, 1370–1372 (2013).

    PubMed 

    Google Scholar 

  • Bai, C. B. et al. A mouse model for testing remyelinating therapies. Exp. Neurol. 283, 330–340 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gudi, V. et al. Regional differences between grey and white matter in cuprizone induced demyelination. Brain Res. 1283, 127–138 (2009).

    PubMed 

    Google Scholar 

  • Strijbis, E. M. M., Kooi, E. J., van der Valk, P. & Geurts, J. J. G. Cortical remyelination is heterogeneous in multiple sclerosis. J. Neuropathol. Exp. Neurol. 76, 390–401 (2017).

    PubMed 

    Google Scholar 

  • Chang, A. et al. Cortical remyelination: a new target for repair therapies in multiple sclerosis. Ann. Neurol. 72, 918–926 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Albert, M., Antel, J., Bruck, W. & Stadelmann, C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 17, 129–138 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Szuchet, S. et al. The genetic signature of perineuronal oligodendrocytes reveals their unique phenotype. Eur. J. Neurosci. 34, 1906–1922 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 570, 332–337 (2019). This study identified changes in the oligodendrocyte lineage in Alzheimer’s disease, showing populations shifts in disease, some of which correlated with cognitive impairment, and were sex-specific.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sadick, J. S. et al. Astrocytes and oligodendrocytes undergo subtype-specific transcriptional changes in Alzheimer’s disease. Neuron https://doi.org/10.1016/j.neuron.2022.03.008 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Macnair, W. et al. Single nuclei RNAseq stratifies multiple sclerosis patients into three distinct white matter glia responses. bioRxiv https://doi.org/10.1101/2022.04.06.487263 (2022).

  • Ladiwala, U., Li, H., Antel, J. P. & Nalbantoglu, J. p53 induction by tumor necrosis factor-alpha and involvement of p53 in cell death of human oligodendrocytes. J. Neurochem. 73, 605–611 (1999).

    PubMed 

    Google Scholar 

  • Williamson, J. M. & Lyons, D. A. Myelin dynamics throughout life: an ever-changing landscape. Front. Cell Neurosci. 12, 424 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Luo, J. X. X. et al. Human oligodendrocyte myelination potential; relation to age and differentiation. Ann. Neurol. 91, 178–191 (2022).

    PubMed 

    Google Scholar 

  • Wang, F. et al. Myelin degeneration and diminished myelin renewal contribute to age-related deficits in memory. Nat. Neurosci. 23, 481–486 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chen, J. F. et al. Enhancing myelin renewal reverses cognitive dysfunction in a murine model of Alzheimer’s disease. Neuron 109, 2292–2307.e2295 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, F., Liang, P., Fu, H., Zhang, J. C. & Chen, J. Effects of normal aging on myelin sheath ultrastructures in the somatic sensorimotor system of rats. Mol. Med. Rep. 10, 459–466 (2014).

    PubMed 

    Google Scholar 

  • Peters, A., Sethares, C. & Killiany, R. J. Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J. Comp. Neurol. 435, 241–248 (2001).

    PubMed 

    Google Scholar 

  • Peters, A. & Sethares, C. Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J. Comp. Neurol. 442, 277–291 (2002).

    PubMed 

    Google Scholar 

  • Call, C. L. et al. Oligodendrocytes form paranodal bridges that generate chains of myelin sheaths that are vulnerable to degeneration with age. Preprint at bioRxiv https://doi.org/10.1101/2022.02.16.480718 (2022). This study revealed anovel mechanism of myelination of distal axons by oligodendrocytes, by creatingbridges between myelin internodes; these are particularly vulnerable todegeneration with ageing relative to internodes stemming from theoligodendrocyte cell body.

  • Neumann, B., Segel, M., Chalut, K. J. & Franklin, R. J. Remyelination and ageing: reversing the ravages of time. Mult. Scler. 25, 1835–1841 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, S. et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat. Neurosci. 11, 1024–1034 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ximerakis, M. et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat. Neurosci. 22, 1696–1708 (2019).

    PubMed 

    Google Scholar 

  • Dulken, B. W. et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571, 205–210 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yaqubi, M. et al. Regional and age-related diversity of human mature oligodendrocytes. Glia 70, 1938–1949 (2022).

    PubMed 

    Google Scholar 

  • Kirby, L. et al. Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nat. Commun. 10, 3887 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rone, M. B. et al. Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival. J. Neurosci. 36, 4698–4707 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Neumann, B. et al. Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25, 473–485 e478 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Saher, G. et al. High cholesterol level is essential for myelin membrane growth. Nat. Neurosci. 8, 468–475 (2005).

    PubMed 

    Google Scholar 

  • Voskuhl, R. R. et al. Gene expression in oligodendrocytes during remyelination reveals cholesterol homeostasis as a therapeutic target in multiple sclerosis. Proc. Natl Acad. Sci. USA 116, 10130–10139 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dimas, P. et al. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife 8, https://doi.org/10.7554/eLife.44702 (2019).

  • Camargo, N. et al. Oligodendroglial myelination requires astrocyte-derived lipids. PLoS Biol. 15, e1002605 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Camargo, N. et al. High-fat diet ameliorates neurological deficits caused by defective astrocyte lipid metabolism. FASEB J. 26, 4302–4315 (2012).

    PubMed 

    Google Scholar 

  • Montani, L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev. Biol. 112, 114–122 (2021).

    PubMed 

    Google Scholar 

  • Decker, L., Baron, W. & Ffrench-Constant, C. Lipid rafts: microenvironments for integrin-growth factor interactions in neural development. Biochem Soc. Trans. 32, 426–430 (2004).

    PubMed 

    Google Scholar 

  • Hubler, Z. et al. Accumulation of 8,9-unsaturated sterols drives oligodendrocyte formation and remyelination. Nature 560, 372–376 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Berghoff, S. A. et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis. Nat. Neurosci. 24, 47–60 (2021).

    PubMed 

    Google Scholar 

  • Martin, E. et al. Teriflunomide promotes oligodendroglial 8,9-unsaturated sterol accumulation and CNS remyelination. Neurol. Neuroimmunol. Neuroinflamm. 8, https://doi.org/10.1212/NXI.0000000000001091 (2021).

  • Hubler, Z. et al. Modulation of lanosterol synthase drives 24,25-epoxysterol synthesis and oligodendrocyte formation. Cell Chem. Biol. 28, 866–875.e865 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sax, J. L., Hubler, Z., Allimuthu, D. & Adams, D. J. Screening reveals sterol derivatives with pro-differentiation, pro-survival, or potent cytotoxic effects on oligodendrocyte progenitor cells. ACS Chem. Biol. 16, 1288–1297 (2021).

    PubMed 

    Google Scholar 

  • Lombardi, M. et al. Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol. 138, 987–1012 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Penkert, H. et al. Proteomic and lipidomic profiling of demyelinating lesions identifies fatty acids as modulators in lesion recovery. Cell Rep. 37, 109898 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Guttenplan, K. A. et al. Neurotoxic reactive astrocytes induce cell death via saturated lipids. Nature 599, 102–107 (2021).

    PubMed 

    Google Scholar 

  • Badreddine, A. et al. Argan oil-mediated attenuation of organelle dysfunction, oxidative stress and cell death induced by 7-ketocholesterol in murine oligodendrocytes 158N. Int. J. Mol. Sci. 18, https://doi.org/10.3390/ijms18102220 (2017).

  • Dong, Y. et al. Oxidized phosphatidylcholines found in multiple sclerosis lesions mediate neurodegeneration and are neutralized by microglia. Nat. Neurosci. 24, 489–503 (2021).

    PubMed 

    Google Scholar 

  • Itoh, N. et al. Cell-specific and region-specific transcriptomics in the multiple sclerosis model: focus on astrocytes. Proc. Natl Acad. Sci. USA 115, E302–E309 (2018).

    PubMed 

    Google Scholar 

  • Marcos, J., Shackleton, C. H., Buddhikot, M. M., Porter, F. D. & Watson, G. L. Cholesterol biosynthesis from birth to adulthood in a mouse model for 7-dehydrosterol reductase deficiency (Smith-Lemli-Opitz syndrome). Steroids 72, 802–808 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dang Do, A. N., Baker, E. H., Warren, K. E., Bianconi, S. E. & Porter, F. D. Spontaneously regressing brain lesions in Smith-Lemli-Opitz syndrome. Am. J. Med. Genet. A 176, 386–390 (2018).

    PubMed 

    Google Scholar 

  • Stumpf, S. K. et al. Ketogenic diet ameliorates axonal defects and promotes myelination in Pelizaeus-Merzbacher disease. Acta Neuropathol. 138, 147–161 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Osorio, M. J. & Goldman, S. A. Neurogenetics of Pelizaeus-Merzbacher disease. Handb. Clin. Neurol. 148, 701–722 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Simons, M. et al. Overexpression of the myelin proteolipid protein leads to accumulation of cholesterol and proteolipid protein in endosomes/lysosomes: implications for Pelizaeus-Merzbacher disease. J. Cell Biol. 157, 327–336 (2002).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laukka, J. J., Kamholz, J., Bessert, D. & Skoff, R. P. Novel pathologic findings in patients with Pelizaeus-Merzbacher disease. Neurosci. Lett. 627, 222–232 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davies-Thompson, J., Vavasour, I., Scheel, M., Rauscher, A. & Barton, J. J. Reduced myelin water in the white matter tracts of patients with niemann-pick disease type C. Am. J. Neuroradiol. 37, 1487–1489 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, F. et al. Proteomics of the corpus callosum to identify novel factors involved in hypomyelinated Niemann-Pick Type C disease mice. Mol. Brain 12, 17 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanier, M. T. Niemann-Pick disease type C. Orphanet J. Rare Dis. 5, 16 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, C. C. et al. Multi-parametric neuroimaging evaluation of cerebrotendinous xanthomatosis and its correlation with neuropsychological presentations. BMC Neurol. 10, 59 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tao, Q. Q. et al. Clinical and genetic characteristics of Chinese patients with cerebrotendinous xanthomatosis. Orphanet J. Rare Dis. 14, 282 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Davis, D. L. et al. Dynamics of sphingolipids and the serine palmitoyltransferase complex in rat oligodendrocytes during myelination. J. Lipid Res. 61, 505–522 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, J. et al. Myelin lipid abnormalities in the aspartoacylase-deficient tremor rat. Neurochem Res. 34, 138–148 (2009).

    PubMed 

    Google Scholar 

  • Pant, D. C. et al. Loss of the sphingolipid desaturase DEGS1 causes hypomyelinating leukodystrophy. J. Clin. Invest. 129, 1240–1256 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bieberich, E. There is more to a lipid than just being a fat: sphingolipid-guided differentiation of oligodendroglial lineage from embryonic stem cells. Neurochem Res. 36, 1601–1611 (2011).

    PubMed 

    Google Scholar 

  • Marin-Valencia, I., Roe, C. R. & Pascual, J. M. Pyruvate carboxylase deficiency: mechanisms, mimics and anaplerosis. Mol. Genet. Metab. 101, 9–17 (2010).

    PubMed 

    Google Scholar 

  • Plemel, J. R., Liu, W. Q. & Yong, V. W. Remyelination therapies: a new direction and challenge in multiple sclerosis. Nat. Rev. Drug Discov. 16, 617–634 (2017).

    PubMed 

    Google Scholar 

  • Ghorbani, S. & Yong, V. W. The extracellular matrix as modifier of neuroinflammation and remyelination in multiple sclerosis. Brain 144, 1958–1973 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lloyd, A. F. & Miron, V. E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 15, 447–458 (2019).

    PubMed 

    Google Scholar 

  • Miron, V. E. Microglia-driven regulation of oligodendrocyte lineage cells, myelination, and remyelination. J. Leukoc. Biol. 101, 1103–1108 (2017).

    PubMed 

    Google Scholar 

  • Zhou, L. et al. Gab1 mediates PDGF signaling and is essential to oligodendrocyte differentiation and CNS myelination. Elife 9, https://doi.org/10.7554/eLife.52056 (2020).

  • Watzlawik, J. O., Warrington, A. E. & Rodriguez, M. PDGF is required for remyelination-promoting IgM stimulation of oligodendrocyte progenitor cell proliferation. PLoS ONE 8, e55149 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Medved, J. et al. Novel guanidine compounds inhibit platelet-derived growth factor receptor alpha transcription and oligodendrocyte precursor cell proliferation. Glia 69, 792–811 (2021).

    PubMed 

    Google Scholar 

  • Yao, Z. F. et al. Transplantation of PDGF-AA-overexpressing oligodendrocyte precursor cells promotes recovery in rat following spinal cord injury. Front. Cell Neurosci. 11, 79 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Sherafat, A., Pfeiffer, F., Reiss, A. M., Wood, W. M. & Nishiyama, A. Microglial neuropilin-1 promotes oligodendrocyte expansion during development and remyelination by trans-activating platelet-derived growth factor receptor. Nat. Commun. 12, 2265 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Younsi, A. et al. Three growth factors induce proliferation and differentiation of neural precursor cells in vitro and support cell-transplantation after spinal cord injury in vivo. Stem Cells Int. 2020, 5674921 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cardona, H. J., Somasundaram, A., Crabtree, D. M., Gadd, S. L. & Becher, O. J. Prenatal overexpression of platelet-derived growth factor receptor A results in central nervous system hypomyelination. Brain Behav. 11, e2332 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Furusho, M., Dupree, J. L., Nave, K. A. & Bansal, R. Fibroblast growth factor receptor signaling in oligodendrocytes regulates myelin sheath thickness. J. Neurosci. 32, 6631–6641 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Furusho, M., Ishii, A. & Bansal, R. Signaling by FGF receptor 2, not FGF receptor 1, regulates myelin thickness through activation of ERK1/2-MAPK, which promotes mTORC1 activity in an Akt-independent manner. J. Neurosci. 37, 2931–2946 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rajendran, R., Giraldo-Velasquez, M., Stadelmann, C. & Berghoff, M. Oligodendroglial fibroblast growth factor receptor 1 gene targeting protects mice from experimental autoimmune encephalomyelitis through ERK/AKT phosphorylation. Brain Pathol. 28, 212–224 (2018).

    PubMed 

    Google Scholar 

  • Thummler, K. et al. Polarizing receptor activation dissociates fibroblast growth factor 2 mediated inhibition of myelination from its neuroprotective potential. Acta Neuropathol. Commun. 7, 212 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fortin, D., Rom, E., Sun, H., Yayon, A. & Bansal, R. Distinct fibroblast growth factor (FGF)/FGF receptor signaling pairs initiate diverse cellular responses in the oligodendrocyte lineage. J. Neurosci. 25, 7470–7479 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Butt, A. M. & Dinsdale, J. Fibroblast growth factor 2 induces loss of adult oligodendrocytes and myelin in vivo. Exp. Neurol. 192, 125–133 (2005).

    PubMed 

    Google Scholar 

  • de Jong, J. M., Wang, P., Oomkens, M. & Baron, W. Remodeling of the interstitial extracellular matrix in white matter multiple sclerosis lesions: Implications for remyelination failure. J. Neurosci. Res. 98, 1370–1397 (2020).

  • Malekzadeh, A. et al. Plasma proteome in multiple sclerosis disease progression. Ann. Clin. Transl. Neurol. 6, 1582–1594 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Buttery, P. C. & ffrench-Constant, C. Laminin-2/integrin interactions enhance myelin membrane formation by oligodendrocytes. Mol. Cell Neurosci. 14, 199–212 (1999).

    PubMed 

    Google Scholar 

  • Colognato, H. et al. CNS integrins switch growth factor signalling to promote target-dependent survival. Nat. Cell Biol. 4, 833–841 (2002).

    PubMed 

    Google Scholar 

  • Laursen, L. S., Chan, C. W. & Ffrench-Constant, C. Translation of myelin basic protein mRNA in oligodendrocytes is regulated by integrin activation and hnRNP-K. J. Cell Biol. 192, 797–811 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Camara, J. et al. Integrin-mediated axoglial interactions initiate myelination in the central nervous system. J. Cell Biol. 185, 699–712 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Decker, L. & ffrench-Constant, C. Lipid rafts and integrin activation regulate oligodendrocyte survival. J. Neurosci. 24, 3816–3825 (2004).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Relvas, J. B. et al. Expression of dominant-negative and chimeric subunits reveals an essential role for beta1 integrin during myelination. Curr. Biol. 11, 1039–1043 (2001).

    PubMed 

    Google Scholar 

  • Stoffels, J. M. et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain 136, 116–131 (2013).

    PubMed 

    Google Scholar 

  • Back, S. A. et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat. Med. 11, 966–972 (2005).

    PubMed 

    Google Scholar 

  • Bugiani, M. et al. Hyaluronan accumulation and arrested oligodendrocyte progenitor maturation in vanishing white matter disease. Brain 136, 209–222 (2013).

    PubMed 

    Google Scholar 

  • Sloane, J. A. et al. Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proc. Natl Acad. Sci. USA 107, 11555–11560 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Q. et al. High level of serum and cerebrospinal fluid of heparan sulfate and hyaluronic acid might be a biomarker of severity of neuromyelitis optica. Front. Immunol. 12, 705536 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Jagielska, A. et al. Mechanical strain promotes oligodendrocyte differentiation by global changes of gene expression. Front. Cell Neurosci. 11, 93 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Urbanski, M. M., Brendel, M. B. & Melendez-Vasquez, C. V. Acute and chronic demyelinated CNS lesions exhibit opposite elastic properties. Sci. Rep. 9, 999 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mozafari, S. et al. Multiple sclerosis iPS-derived oligodendroglia conserve their properties to functionally interact with axons and glia in vivo. Sci. Adv. 6, https://doi.org/10.1126/sciadv.abc6983 (2020).

  • Starost, L. et al. Extrinsic immune cell-derived, but not intrinsic oligodendroglial factors contribute to oligodendroglial differentiation block in multiple sclerosis. Acta Neuropathol. 140, 715–736 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yamasaki, R. et al. Differential roles of microglia and monocytes in the inflamed central nervous system. J. Exp. Med. 211, 1533–1549 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Ajami, B., Bennett, J. L., Krieger, C., McNagny, K. M. & Rossi, F. M. Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat. Neurosci. 14, 1142–1149 (2011).

    PubMed 

    Google Scholar 

  • Marzan, D. E. et al. Activated microglia drive demyelination via CSF1R signaling. Glia 69, 1583–1604 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Clark, I. C. et al. Barcoded viral tracing of single-cell interactions in central nervous system inflammation. Science 372, https://doi.org/10.1126/science.abf1230 (2021).

  • Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J. et al. Tumor necrosis factor alpha mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J. Neurosci. 28, 5321–5330 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Argaw, A. T. et al. Astrocyte-derived VEGF-A drives blood-brain barrier disruption in CNS inflammatory disease. J. Clin. Invest. 122, 2454–2468 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, R. Y. et al. Astrocyte CCL2 sustains immune cell infiltration in chronic experimental autoimmune encephalomyelitis. J. Neuroimmunol. 274, 53–61 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meares, G. P., Ma, X., Qin, H. & Benveniste, E. N. Regulation of CCL20 expression in astrocytes by IL-6 and IL-17. Glia 60, 771–781 (2012).

    PubMed 

    Google Scholar 

  • Nitsch, L. et al. Astrocyte-specific expression of interleukin 23 leads to an aggravated phenotype and enhanced inflammatory response with B cell accumulation in the EAE model. J. Neuroinflammation 18, 101 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Hridi, S. U. et al. Increased levels of IL-16 in the central nervous system during neuroinflammation are associated with infiltrating immune cells and resident glial cells. Biology 10, https://doi.org/10.3390/biology10060472 (2021).

  • Moore, C. S. et al. Direct and indirect effects of immune and central nervous system-resident cells on human oligodendrocyte progenitor cell differentiation. J. Immunol. 194, 761–772 (2015).

    PubMed 

    Google Scholar 

  • Sanmarco, L. M. et al. Gut-licensed IFNgamma(+) NK cells drive LAMP1(+)TRAIL(+) anti-inflammatory astrocytes. Nature 590, 473–479 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Vanderlocht, J. et al. Leukemia inhibitory factor is produced by myelin-reactive T cells from multiple sclerosis patients and protects against tumor necrosis factor-alpha-induced oligodendrocyte apoptosis. J. Neurosci. Res. 83, 763–774 (2006).

    PubMed 

    Google Scholar 

  • Molina-Gonzalez, I. & Miron, V. E. Astrocytes in myelination and remyelination. Neurosci. Lett. 713, 134532 (2019).

    PubMed 

    Google Scholar 

  • Dillenburg, A. et al. Activin receptors regulate the oligodendrocyte lineage in health and disease. Acta Neuropathol. 135, 887–906 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lubetzki, C., Zalc, B., Williams, A., Stadelmann, C. & Stankoff, B. Remyelination in multiple sclerosis: from basic science to clinical translation. Lancet Neurol. 19, 678–688 (2020).

    PubMed 

    Google Scholar 

  • Stangel, M., Kuhlmann, T., Matthews, P. M. & Kilpatrick, T. J. Achievements and obstacles of remyelinating therapies in multiple sclerosis. Nat. Rev. Neurol. 13, 742–754 (2017).

    PubMed 

    Google Scholar 

  • Duncan, I. D. et al. The adult oligodendrocyte can participate in remyelination. Proc. Natl Acad. Sci. USA 115, E11807–E11816 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bacmeister, C. M. et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat. Neurosci. 23, 819–831 (2020). This was the first study demonstrating that mature oligodendrocytes which survive after demyelinating injury can regenerate processes to remyelinate, although this is a rare occurance.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Neely, S. A. et al. New oligodendrocytes exhibit more abundant and accurate myelin regeneration than those that survive demyelination. Nat. Neurosci. 25, 415–420 (2022). This study revealed that mature oligodendrocytes which contribute to remyelination do so inefficiently and poorly, misdirecting their myelin to neuronal cell bodies.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yeung, M. S. Y. et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566, 538–542 (2019). This study measured integration of 14C derived from nuclear testing in genomic DNA to assess the dynamics of oligodendrocyte generation in multiple sclerosis brain and found that most cells within remyelinating lesions were ‘old’, suggesting that surviving mature oligodendrocyes may have contributed to remyelination.

    PubMed 
    PubMed Central 

    Google Scholar 

  • Shen, K. et al. Multiple sclerosis risk gene Mertk is required for microglial activation and subsequent remyelination. Cell Rep. 34, 108835 (2021).

    PubMed 

    Google Scholar 

  • Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 26, 131–142 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kirby, L. & Castelo-Branco, G. Crossing boundaries: Interplay between the immune system and oligodendrocyte lineage cells. Semin Cell Dev. Biol. 116, 45–52 (2021).

    PubMed 

    Google Scholar 

  • Liu, F., Vidarsson, L., Winter, J. D., Tran, H. & Kassner, A. Sex differences in the human corpus callosum microstructure: a combined T2 myelin-water and diffusion tensor magnetic resonance imaging study. Brain Res. 1343, 37–45 (2010).

    PubMed 

    Google Scholar 

  • Darling, J. S. & Daniel, J. M. Pubertal hormones mediate sex differences in levels of myelin basic protein in the orbitofrontal cortex of adult rats. Neuroscience 406, 487–495 (2019).

    PubMed 

    Google Scholar 

  • Raffaele, S., Boccazzi, M. & Fumagalli, M. Oligodendrocyte dysfunction in amyotrophic lateral sclerosis: mechanisms and therapeutic perspectives. Cells 10, https://doi.org/10.3390/cells10030565 (2021).

  • Ferrari Bardile, C. et al. Intrinsic mutant HTT-mediated defects in oligodendroglia cause myelination deficits and behavioral abnormalities in Huntington disease. Proc. Natl Acad. Sci. USA 116, 9622–9627 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Related Articles