Metabolic

Caloric restriction disrupts the microbiota and colonization resistance

  • 1.

    David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Johansson, K., Neovius, M. & Hemmingsson, E. Effects of anti-obesity drugs, diet, and exercise on weight-loss maintenance after a very-low-calorie diet or low-calorie diet: a systematic review and meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 99, 14–23 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Louis, S., Tappu, R. M., Damms-Machado, A., Huson, D. H. & Bischoff, S. C. Characterization of the gut microbial community of obese patients following a weight-loss intervention using whole metagenome shotgun sequencing. PLoS ONE 11, e0149564 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 4.

    Heinsen, F.-A. et al. Beneficial effects of a dietary weight loss intervention on human gut microbiome diversity and metabolism are not sustained during weight maintenance. Obes. Facts 9, 379–391 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 5.

    Spranger, L. et al. Thrifty energy phenotype predicts weight regain — results of a randomized controlled trial. Preprint at https://www.medrxiv.org/content/10.1101/2021.03.25.21254300v1 (2021).

  • 6.

    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 7.

    Zarrinpar, A., Chaix, A., Yooseph, S. & Panda, S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 20, 1006–1017 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 8.

    Harris, J. K. et al. Specific microbiome changes in a mouse model of parenteral nutrition associated liver injury and intestinal inflammation. PLoS ONE 9, e110396 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 9.

    van Passel, M. W. et al. The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS ONE 6, e16876 (2011).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 10.

    Morrison, D. J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189–200 (2016).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 11.

    Uchiyama, T., Irie, M., Mori, H., Kurokawa, K. & Yamada, T. FuncTree: functional analysis and visualization for large-scale omics data. PLoS ONE 10, e0126967 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Langille, M. G. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 14.

    Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 15.

    Cani, P. D. et al. Microbial regulation of organismal energy homeostasis. Nat. Metab. 1, 34–46 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 16.

    Hunt, J. J. & Ballard, J. D. Variations in virulence and molecular biology among emerging strains of Clostridium difficile. Microbiol. Mol. Biol. Rev. 77, 567–581 (2013).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 17.

    Bauer, M. P. et al. Clostridium difficile infection in Europe: a hospital-based survey. Lancet 377, 63–73 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Kuehne, S. A. et al. The role of toxin A and toxin B in Clostridium difficile infection. Nature 467, 711–713 (2010).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Wüst, J., Sullivan, N. M., Hardegger, U. & Wilkins, T. D. Investigation of an outbreak of antibiotic-associated colitis by various typing methods. J. Clin. Microbiol. 16, 1096–1101 (1982).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 20.

    Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 21.

    Sorg, J. A. & Sonenshein, A. L. Bile salts and glycine as cogerminants for Clostridium difficile spores. J. Bacteriol. 190, 2505–2512 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 22.

    Festi, D. et al. Gallbladder motility and gallstone formation in obese patients following very low calorie diets. Use it (fat) to lose it (well). Int. J. Obes. Relat. Metab. Disord. 22, 592–600 (1998).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Carmody, R. N. et al. Cooking shapes the structure and function of the gut microbiome. Nat. Microbiol. 4, 2052–2063 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 24.

    Fang, F. C., Polage, C. R. & Wilcox, M. H. Point-counterpoint: what is the optimal approach for detection of Clostridium difficile infection? J. Clin. Microbiol. 55, 670–680 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Furuya-Kanamori, L. et al. Asymptomatic Clostridium difficile colonization: epidemiology and clinical implications. BMC Infect. Dis. 15, 516 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 26.

    Zacharioudakis, I. M., Zervou, F. N., Pliakos, E. E., Ziakas, P. D. & Mylonakis, E. Colonization with toxinogenic C. difficile upon hospital admission, and risk of infection: a systematic review and meta-analysis. Am. J. Gastroenterol. 110, 381–390, quiz 391 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 27.

    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6, 1621–1624 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 29.

    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 30.

    Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-seq. PLoS ONE 8, e67019 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Fernandes, A. D. et al. Unifying the analysis of high-throughput sequencing datasets: characterizing RNA-seq, 16S rRNA gene sequencing and selective growth experiments by compositional data analysis. Microbiome 2, 15 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 32.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 33.

    Kanehisa, M., Goto, S., Sato, Y., Furumichi, M. & Tanabe, M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Zhao, Y., Tang, H. & Ye, Y. RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data. Bioinformatics 28, 125–126 (2012).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Wu, D. et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176–2182 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 40.

    Wood, D. E., Lu, J. & Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 20, 257 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).

    PubMed Central 

    Google Scholar 

  • 42.

    Edwards, U., Rogall, T., Blöcker, H., Emde, M. & Böttger, E. C. Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res. 17, 7843–7853 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Sarafian, M. H. et al. Bile acid profiling and quantification in biofluids using ultra-performance liquid chromatography tandem mass spectrometry. Anal. Chem. 87, 9662–9670 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Cai, J. et al. Orthogonal comparison of GC-MS and 1H NMR spectroscopy for short chain fatty acid quantitation. Anal. Chem. 89, 7900–7906 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Zheng, X. et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics 9, 818–827 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Erben, U. et al. A guide to histomorphological evaluation of intestinal inflammation in mouse models. Int. J. Clin. Exp. Pathol. 7, 4557–4576 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Chen, E. Z. & Li, H. A two-part mixed-effects model for analyzing longitudinal microbiome compositional data. Bioinformatics 32, 2611–2617 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 48.

    Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 1, 6ra14 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 49.

    Fouladi, F. et al. Sequence variant analysis reveals poor correlations in microbial taxonomic abundance between humans and mice after gnotobiotic transfer. ISME J. 14, 1809–1820 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Persson, S., Torpdahl, M. & Olsen, K. E. New multiplex PCR method for the detection of Clostridium difficile toxin A (tcdA) and toxin B (tcdB) and the binary toxin (cdtA/cdtB) genes applied to a Danish strain collection. Clin. Microbiol. Infect. 14, 1057–1064 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Kubota, H. et al. Longitudinal investigation of carriage rates, counts, and genotypes of toxigenic Clostridium difficile in early infancy. Appl. Environ. Microbiol. 82, 5806–5814 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 52.

    Li, D., Liu, C.-M., Luo, R., Sadakane, K. & Lam, T.-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 55.

    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 56.

    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 57.

    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).

    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Pritchard, L., Glover, R. H., Humphris, S., Elphinstone, J. G. & Toth, I. K. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24 (2015).

    Article 

    Google Scholar 

  • 59.

    Segata, N., Börnigen, D., Morgan, X. C. & Huttenhower, C. PhyloPhlAn is a new method for improved phylogenetic and taxonomic placement of microbes. Nat. Commun. 4, 2304 (2013).

    ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 60.

    Wattam, A. R. et al. Improvements to PATRIC, the all-bacterial Bioinformatics Database and Analysis Resource Center. Nucleic Acids Res. 45, D535–D542 (2017).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Article 

    Google Scholar 

  • 62.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).

  • 63.

    Brouns, F. et al. Glycaemic index methodology. Nutr. Res. Rev. 18, 145–171 (2005).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Related Articles